Haendeler Judith, Dröse Stefan, Büchner Nicole, Jakob Sascha, Altschmied Joachim, Goy Christine, Spyridopoulos Ioakim, Zeiher Andreas M, Brandt Ulrich, Dimmeler Stefanie
Molecular Cardiology, Department of Internal Medicine III, Centre of Biological Chemistry, University of Frankfurt, Germany.
Arterioscler Thromb Vasc Biol. 2009 Jun;29(6):929-35. doi: 10.1161/ATVBAHA.109.185546. Epub 2009 Mar 5.
The enzyme telomerase and its catalytic subunit the telomerase reverse transcriptase (TERT) are important for maintenance of telomere length in the nucleus. Recent studies provided evidence for a mitochondrial localization of TERT. Therefore, we investigated the exact localization of TERT within the mitochondria and its function.
Here, we demonstrate that TERT is localized in the matrix of the mitochondria. TERT binds to mitochondrial DNA at the coding regions for ND1 and ND2. Binding of TERT to mitochondrial DNA protects against ethidium bromide-induced damage. TERT increases overall respiratory chain activity, which is most pronounced at complex I and dependent on the reverse transcriptase activity of the enzyme. Moreover, mitochondrial reactive oxygen species are increased after genetic ablation of TERT by shRNA. Mitochondrially targeted TERT and not wild-type TERT revealed the most prominent protective effect on H(2)O(2)-induced apoptosis. Lung fibroblasts from 6-month-old TERT(-/-) mice (F2 generation) showed increased sensitivity toward UVB radiation and heart mitochondria exhibited significantly reduced respiratory chain activity already under basal conditions, demonstrating the protective function of TERT in vivo.
Mitochondrial TERT exerts a novel protective function by binding to mitochondrial DNA, increasing respiratory chain activity and protecting against oxidative stress-induced damage.
端粒酶及其催化亚基端粒酶逆转录酶(TERT)对于维持细胞核中端粒长度很重要。最近的研究为TERT的线粒体定位提供了证据。因此,我们研究了TERT在线粒体内的确切定位及其功能。
在此,我们证明TERT定位于线粒体基质中。TERT与线粒体DNA的ND1和ND2编码区域结合。TERT与线粒体DNA的结合可防止溴化乙锭诱导的损伤。TERT增加了整体呼吸链活性,这在复合体I中最为明显,并且依赖于该酶的逆转录酶活性。此外,通过短发夹RNA(shRNA)对TERT进行基因敲除后,线粒体活性氧增加。线粒体靶向的TERT而非野生型TERT对H2O2诱导的细胞凋亡显示出最显著的保护作用。来自6个月大的TERT基因敲除小鼠(F2代)的肺成纤维细胞对紫外线B辐射的敏感性增加,并且心脏线粒体在基础条件下就已显示出明显降低的呼吸链活性,这证明了TERT在体内的保护功能。
线粒体TERT通过与线粒体DNA结合、增加呼吸链活性以及防止氧化应激诱导的损伤发挥新的保护功能。