Brigham Christopher, Caughlan Ruth, Gallegos Rene, Dallas Mary Beth, Godoy Veronica G, Malamy Michael H
Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA.
J Bacteriol. 2009 Jun;191(11):3629-38. doi: 10.1128/JB.00811-08. Epub 2009 Mar 20.
We characterized the nanLET operon in Bacteroides fragilis, whose products are required for the utilization of the sialic acid N-acetyl neuraminic acid (NANA) as a carbon and energy source. The first gene of the operon is nanL, which codes for an aldolase that cleaves NANA into N-acetyl mannosamine (manNAc) and pyruvate. The next gene, nanE, codes for a manNAc/N-acetylglucosamine (NAG) epimerase, which, intriguingly, possesses more similarity to eukaryotic renin binding proteins than to other bacterial NanE epimerase proteins. Unphosphorylated manNAc is the substrate of NanE, while ATP is a cofactor in the epimerase reaction. The third gene of the operon is nanT, which shows similarity to the major transporter facilitator superfamily and is most likely to be a NANA transporter. Deletion of any of these genes eliminates the ability of B. fragilis to grow on NANA. Although B. fragilis does not normally grow with manNAc as the sole carbon source, we isolated a B. fragilis mutant strain that can grow on this substrate, likely due to a mutation in a NAG transporter; both manNAc transport and NAG transport are affected in this strain. Deletion of the nanE epimerase gene or the rokA hexokinase gene, whose product phosphorylates NAG, in the manNAc-enabled strain abolishes growth on manNAc. Thus, B. fragilis possesses a new pathway of NANA utilization, which we show is also found in other Bacteroides species.
我们对脆弱拟杆菌中的nanLET操纵子进行了表征,该操纵子的产物是利用唾液酸N-乙酰神经氨酸(NANA)作为碳源和能源所必需的。操纵子的第一个基因是nanL,它编码一种醛缩酶,可将NANA裂解为N-乙酰甘露糖胺(manNAc)和丙酮酸。下一个基因nanE编码一种manNAc/N-乙酰葡糖胺(NAG)表异构酶,有趣的是,它与真核肾素结合蛋白的相似性高于其他细菌的NanE表异构酶蛋白。未磷酸化的manNAc是NanE的底物,而ATP是表异构酶反应中的辅助因子。操纵子的第三个基因是nanT,它与主要转运体超家族相似,很可能是一种NANA转运体。删除这些基因中的任何一个都会消除脆弱拟杆菌在NANA上生长的能力。虽然脆弱拟杆菌通常不能以manNAc作为唯一碳源生长,但我们分离出了一种能在这种底物上生长的脆弱拟杆菌突变株,这可能是由于NAG转运体发生了突变;该菌株中manNAc转运和NAG转运均受到影响。在能够利用manNAc的菌株中删除nanE表异构酶基因或rokA己糖激酶基因(其产物使NAG磷酸化)会导致在manNAc上无法生长。因此,脆弱拟杆菌拥有一条新的NANA利用途径,我们发现其他拟杆菌属物种中也存在这种途径。