Suppr超能文献

脆弱拟杆菌对唾液酸(N-乙酰神经氨酸)的利用需要一种新型的N-乙酰甘露糖胺差向异构酶。

Sialic acid (N-acetyl neuraminic acid) utilization by Bacteroides fragilis requires a novel N-acetyl mannosamine epimerase.

作者信息

Brigham Christopher, Caughlan Ruth, Gallegos Rene, Dallas Mary Beth, Godoy Veronica G, Malamy Michael H

机构信息

Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA.

出版信息

J Bacteriol. 2009 Jun;191(11):3629-38. doi: 10.1128/JB.00811-08. Epub 2009 Mar 20.

Abstract

We characterized the nanLET operon in Bacteroides fragilis, whose products are required for the utilization of the sialic acid N-acetyl neuraminic acid (NANA) as a carbon and energy source. The first gene of the operon is nanL, which codes for an aldolase that cleaves NANA into N-acetyl mannosamine (manNAc) and pyruvate. The next gene, nanE, codes for a manNAc/N-acetylglucosamine (NAG) epimerase, which, intriguingly, possesses more similarity to eukaryotic renin binding proteins than to other bacterial NanE epimerase proteins. Unphosphorylated manNAc is the substrate of NanE, while ATP is a cofactor in the epimerase reaction. The third gene of the operon is nanT, which shows similarity to the major transporter facilitator superfamily and is most likely to be a NANA transporter. Deletion of any of these genes eliminates the ability of B. fragilis to grow on NANA. Although B. fragilis does not normally grow with manNAc as the sole carbon source, we isolated a B. fragilis mutant strain that can grow on this substrate, likely due to a mutation in a NAG transporter; both manNAc transport and NAG transport are affected in this strain. Deletion of the nanE epimerase gene or the rokA hexokinase gene, whose product phosphorylates NAG, in the manNAc-enabled strain abolishes growth on manNAc. Thus, B. fragilis possesses a new pathway of NANA utilization, which we show is also found in other Bacteroides species.

摘要

我们对脆弱拟杆菌中的nanLET操纵子进行了表征,该操纵子的产物是利用唾液酸N-乙酰神经氨酸(NANA)作为碳源和能源所必需的。操纵子的第一个基因是nanL,它编码一种醛缩酶,可将NANA裂解为N-乙酰甘露糖胺(manNAc)和丙酮酸。下一个基因nanE编码一种manNAc/N-乙酰葡糖胺(NAG)表异构酶,有趣的是,它与真核肾素结合蛋白的相似性高于其他细菌的NanE表异构酶蛋白。未磷酸化的manNAc是NanE的底物,而ATP是表异构酶反应中的辅助因子。操纵子的第三个基因是nanT,它与主要转运体超家族相似,很可能是一种NANA转运体。删除这些基因中的任何一个都会消除脆弱拟杆菌在NANA上生长的能力。虽然脆弱拟杆菌通常不能以manNAc作为唯一碳源生长,但我们分离出了一种能在这种底物上生长的脆弱拟杆菌突变株,这可能是由于NAG转运体发生了突变;该菌株中manNAc转运和NAG转运均受到影响。在能够利用manNAc的菌株中删除nanE表异构酶基因或rokA己糖激酶基因(其产物使NAG磷酸化)会导致在manNAc上无法生长。因此,脆弱拟杆菌拥有一条新的NANA利用途径,我们发现其他拟杆菌属物种中也存在这种途径。

相似文献

1
Sialic acid (N-acetyl neuraminic acid) utilization by Bacteroides fragilis requires a novel N-acetyl mannosamine epimerase.
J Bacteriol. 2009 Jun;191(11):3629-38. doi: 10.1128/JB.00811-08. Epub 2009 Mar 20.
10
New N-acyl-D-glucosamine 2-epimerases from cyanobacteria with high activity in the absence of ATP and low inhibition by pyruvate.
J Biotechnol. 2013 Nov;168(3):256-63. doi: 10.1016/j.jbiotec.2013.07.003. Epub 2013 Jul 10.

引用本文的文献

1
Structural Basis for Tetramerization of -Acetylglucosamine-6-Phosphate Deacetylase.
J Microbiol Biotechnol. 2025 Aug 26;35:e2505019. doi: 10.4014/jmb.2505.05019.
6
Nutrient acquisition strategies by gut microbes.
Cell Host Microbe. 2024 Jun 12;32(6):863-874. doi: 10.1016/j.chom.2024.05.011.
7
A bacterial sialidase mediates early-life colonization by a pioneering gut commensal.
Cell Host Microbe. 2024 Feb 14;32(2):181-190.e9. doi: 10.1016/j.chom.2023.12.014. Epub 2024 Jan 15.
8
Metagenomic survey reveals global distribution and evolution of microbial sialic acid catabolism.
Front Microbiol. 2023 Sep 29;14:1267152. doi: 10.3389/fmicb.2023.1267152. eCollection 2023.
9
10
Bacterial Sialic Acid Catabolism at the Host-Microbe Interface.
J Microbiol. 2023 Apr;61(4):369-377. doi: 10.1007/s12275-023-00035-7. Epub 2023 Mar 27.

本文引用的文献

1
Evolution of symbiotic bacteria in the distal human intestine.
PLoS Biol. 2007 Jul;5(7):e156. doi: 10.1371/journal.pbio.0050156. Epub 2007 Jun 19.
2
Novel sialic acid transporter of Haemophilus influenzae.
Infect Immun. 2005 Sep;73(9):5291-300. doi: 10.1128/IAI.73.9.5291-5300.2005.
5
MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment.
Brief Bioinform. 2004 Jun;5(2):150-63. doi: 10.1093/bib/5.2.150.
6
Diversity of microbial sialic acid metabolism.
Microbiol Mol Biol Rev. 2004 Mar;68(1):132-53. doi: 10.1128/MMBR.68.1.132-153.2004.
7
Prokaryotic origin of cytidylyltransferases and alpha-ketoacid synthases.
Trends Microbiol. 2004 Mar;12(3):120-8. doi: 10.1016/j.tim.2004.01.004.
10
Evidence of regio-specific glycosylation in human intestinal mucins: presence of an acidic gradient along the intestinal tract.
J Biol Chem. 2003 Nov 21;278(47):46337-48. doi: 10.1074/jbc.M302529200. Epub 2003 Sep 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验