Suppr超能文献

线粒体活性氧生成的氧敏感性取决于代谢条件。

Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions.

作者信息

Hoffman David L, Brookes Paul S

机构信息

From the Departments of Biochemistry, Rochester, New York 14642.

Anesthesiology, University of Rochester Medical Center, Rochester, New York 14642.

出版信息

J Biol Chem. 2009 Jun 12;284(24):16236-16245. doi: 10.1074/jbc.M809512200. Epub 2009 Apr 14.

Abstract

The mitochondrial generation of reactive oxygen species (ROS) plays a central role in many cell signaling pathways, but debate still surrounds its regulation by factors, such as substrate availability, [O2] and metabolic state. Previously, we showed that in isolated mitochondria respiring on succinate, ROS generation was a hyperbolic function of [O2]. In the current study, we used a wide variety of substrates and inhibitors to probe the O2 sensitivity of mitochondrial ROS generation under different metabolic conditions. From such data, the apparent Km for O2 of putative ROS-generating sites within mitochondria was estimated as follows: 0.2, 0.9, 2.0, and 5.0 microM O2 for the complex I flavin site, complex I electron backflow, complex III QO site, and electron transfer flavoprotein quinone oxidoreductase of beta-oxidation, respectively. Differential effects of respiratory inhibitors on ROS generation were also observed at varying [O2]. Based on these data, we hypothesize that at physiological [O2], complex I is a significant source of ROS, whereas the electron transfer flavoprotein quinone oxidoreductase may only contribute to ROS generation at very high [O2]. Furthermore, we suggest that previous discrepancies in the assignment of effects of inhibitors on ROS may be due to differences in experimental [O2]. Finally, the data set (see supplemental material) may be useful in the mathematical modeling of mitochondrial metabolism.

摘要

线粒体活性氧(ROS)的产生在许多细胞信号通路中起着核心作用,但关于其受底物可用性、[O₂]和代谢状态等因素调节的问题仍存在争议。此前,我们发现,在以琥珀酸为呼吸底物的分离线粒体中,ROS的产生是[O₂]的双曲线函数。在本研究中,我们使用了多种底物和抑制剂,以探究不同代谢条件下线粒体ROS产生对O₂的敏感性。根据这些数据,线粒体中假定的ROS产生位点对O₂的表观Km值估计如下:复合体I黄素位点为0.2 μM O₂,复合体I电子回流为0.9 μM O₂,复合体III QO位点为2.0 μM O₂,β-氧化的电子传递黄素蛋白醌氧化还原酶为5.0 μM O₂。在不同的[O₂]条件下,还观察到呼吸抑制剂对ROS产生的不同影响。基于这些数据,我们推测,在生理[O₂]条件下,复合体I是ROS的重要来源,而电子传递黄素蛋白醌氧化还原酶可能仅在非常高的[O₂]条件下才对ROS的产生有贡献。此外,我们认为,此前在抑制剂对ROS影响的归属上存在差异,可能是由于实验[O₂]的不同所致。最后,数据集(见补充材料)可能有助于线粒体代谢的数学建模。

相似文献

1
Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions.
J Biol Chem. 2009 Jun 12;284(24):16236-16245. doi: 10.1074/jbc.M809512200. Epub 2009 Apr 14.
4
Sites of reactive oxygen species generation by mitochondria oxidizing different substrates.
Redox Biol. 2013 May 23;1(1):304-12. doi: 10.1016/j.redox.2013.04.005. eCollection 2013.
7
Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes.
Biochim Biophys Acta. 2014 Mar;1837(3):354-65. doi: 10.1016/j.bbabio.2013.11.006. Epub 2013 Dec 17.
8
Effects of salinity on O₂ consumption, ROS generation and oxidative stress status of gill mitochondria of the mud crab Scylla serrata.
Comp Biochem Physiol C Toxicol Pharmacol. 2012 Mar;155(2):228-37. doi: 10.1016/j.cbpc.2011.08.009. Epub 2011 Sep 10.
9
Topology of superoxide production from different sites in the mitochondrial electron transport chain.
J Biol Chem. 2002 Nov 22;277(47):44784-90. doi: 10.1074/jbc.M207217200. Epub 2002 Sep 16.
10
The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin.
J Bioenerg Biomembr. 2006 Feb;38(1):33-42. doi: 10.1007/s10863-006-9003-8.

引用本文的文献

2
[Down-regulation of ACADM-mediated lipotoxicity inhibits invasion and metastasis of estrogen receptor-positive breast cancer cells].
Nan Fang Yi Ke Da Xue Xue Bao. 2025 Jun 20;45(6):1163-1173. doi: 10.12122/j.issn.1673-4254.2025.06.06.
3
Divergent Requirements for Glutathione Biosynthesis During Osteoclast Differentiation In Vitro and In Vivo.
Antioxidants (Basel). 2025 Feb 10;14(2):197. doi: 10.3390/antiox14020197.
4
Mitochondrial Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.
Physiology (Bethesda). 2025 Jul 1;40(4):0. doi: 10.1152/physiol.00056.2024. Epub 2025 Feb 17.
5
Revisiting reactive oxygen species production in hypoxia.
Pflugers Arch. 2024 Sep;476(9):1423-1444. doi: 10.1007/s00424-024-02986-1. Epub 2024 Jul 3.
8
Low Glycolysis Is Neuroprotective during Anoxic Spreading Depolarization (SD) and Reoxygenation in Locusts.
eNeuro. 2023 Nov 27;10(11). doi: 10.1523/ENEURO.0325-23.2023. Print 2023 Nov.
9
Evaluation of mitochondrial biogenesis and ROS generation in high-grade serous ovarian cancer.
Front Oncol. 2023 Mar 1;13:1129352. doi: 10.3389/fonc.2023.1129352. eCollection 2023.

本文引用的文献

1
Cellular energetic metabolism in sepsis: the need for a systems approach.
Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):763-71. doi: 10.1016/j.bbabio.2008.04.024. Epub 2008 Apr 23.
3
Management of sepsis.
Minerva Anestesiol. 2008 May;74(5):181-95.
6
Mitochondrial complex III regulates hypoxic activation of HIF.
Cell Death Differ. 2008 Apr;15(4):660-6. doi: 10.1038/sj.cdd.4402307. Epub 2008 Jan 25.
8
Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria.
Am J Physiol Cell Physiol. 2008 Feb;294(2):C460-6. doi: 10.1152/ajpcell.00211.2007. Epub 2007 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验