Suppr超能文献

人类鼻黏膜神经调节的新概念。

New concepts of neural regulation in human nasal mucosa.

作者信息

Baraniuk James N, Merck Samantha J

机构信息

Division of Rheumatology, Immunology and Allergy, Georgetown University, Washington, DC 20007-2197, USA.

出版信息

Acta Clin Croat. 2009 Mar;48(1):65-73.

Abstract

Nasal mucosa is innervated by multiple subsets of nociceptive, parasympathetic and sympathetic nerves. These play carefully coordinated roles in regulating glandular, vascular and other processes. These functions are vital for cleaning and humidifying ambient air before it is inhaled into the lungs. The recent recognition of distinct classes of nociceptive nerves with unique patterns of sensory receptors that include seven transmembrane G-protein coupled receptors, new families of transient receptor potential and voltage and calcium gated ion channels, and combinations of neurotransmitters that can be modulated during inflammation by neurotrophic factors has revolutionized our understanding of the complexity and subtlety of nasal innervation. These findings may provide a rational basis for responses to air temperature changes, culinary and botanical odorants ("aromatherapy"), and inhaled irritants in conditions as diverse as idiopathic nonallergic rhinitis, occupational rhinitis, hyposmia, and multiple chemical sensitivity.

摘要

鼻黏膜由伤害性、副交感神经和交感神经的多个亚群支配。这些神经在调节腺体、血管和其他生理过程中发挥着精心协调的作用。这些功能对于在吸入肺部之前清洁和湿润周围空气至关重要。最近发现了不同类别的伤害性神经,它们具有独特的感觉受体模式,包括七跨膜G蛋白偶联受体、新的瞬时受体电位家族以及电压和钙门控离子通道,并且神经递质的组合在炎症期间可被神经营养因子调节,这彻底改变了我们对鼻神经支配的复杂性和微妙性的理解。这些发现可能为应对气温变化、烹饪和植物气味(“芳香疗法”)以及在特发性非过敏性鼻炎、职业性鼻炎、嗅觉减退和多重化学敏感性等多种情况下吸入刺激性物质提供合理依据。

相似文献

1
New concepts of neural regulation in human nasal mucosa.
Acta Clin Croat. 2009 Mar;48(1):65-73.
2
Neuroregulation of human nasal mucosa.
Ann N Y Acad Sci. 2009 Jul;1170:604-9. doi: 10.1111/j.1749-6632.2009.04481.x.
3
Neural regulation of mucosal function.
Pulm Pharmacol Ther. 2008;21(3):442-8. doi: 10.1016/j.pupt.2007.06.006. Epub 2007 Jul 17.
4
Sensory, parasympathetic, and sympathetic neural influences in the nasal mucosa.
J Allergy Clin Immunol. 1992 Dec;90(6 Pt 2):1045-50. doi: 10.1016/0091-6749(92)90121-h.
5
Neuronal markers in allergic rhinitis: expression and correlation with sensory testing.
Laryngoscope. 2007 Sep;117(9):1519-27. doi: 10.1097/MLG.0b013e3180ca7846.
6
Intranasal capsaicin in management of nonallergic (vasomotor) rhinitis.
Prog Drug Res. 2014;68:147-70. doi: 10.1007/978-3-0348-0828-6_6.
7
Spatial distribution of receptor-responses to stimulation with different odours.
Acta Physiol Scand. 1971 Jun;82(2):154-66. doi: 10.1111/j.1748-1716.1971.tb04954.x.
8
[Sensitive innervation of the nasal mucosa: current concepts].
Rev Laryngol Otol Rhinol (Bord). 1990;111(3):271-3.
9
Neuropeptides and nasal secretion.
Am J Physiol. 1991 Oct;261(4 Pt 1):L223-35. doi: 10.1152/ajplung.1991.261.4.L223.
10
[The influence of cold dry air on nasal mucosa].
Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2018 Jan 5;32(1):71-76. doi: 10.13201/j.issn.1001-1781.2018.01.015.

引用本文的文献

1
Advances in the Understanding of ocular and nasal lymphatics.
BMC Immunol. 2025 Mar 6;26(1):16. doi: 10.1186/s12865-025-00697-5.
2
Understanding the role of nerves in head and neck cancers - a review.
Oncol Rev. 2025 Jan 20;18:1514004. doi: 10.3389/or.2024.1514004. eCollection 2024.
3
Nasal turbinate lymphatic obstruction: a proposed new paradigm in the etiology of essential hypertension.
Front Med (Lausanne). 2024 Aug 16;11:1380632. doi: 10.3389/fmed.2024.1380632. eCollection 2024.
5
G-Protein-Coupled Receptor Signaling in Cilia.
Cold Spring Harb Perspect Biol. 2017 Sep 1;9(9):a028183. doi: 10.1101/cshperspect.a028183.
7
Management of Smell Dysfunction.
Curr Allergy Asthma Rep. 2012 Feb 2. doi: 10.1007/s11882-012-0248-5.
8
Subjective nasal fullness and objective congestion.
Proc Am Thorac Soc. 2011 Mar;8(1):62-9. doi: 10.1513/pats.201006-042RN.

本文引用的文献

1
H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase.
Science. 2008 Oct 24;322(5901):587-90. doi: 10.1126/science.1162667.
2
Physiology. CaCl-ing channels get the last laugh.
Science. 2008 Oct 24;322(5901):534-5. doi: 10.1126/science.1165668.
3
TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity.
Science. 2008 Oct 24;322(5901):590-4. doi: 10.1126/science.1163518. Epub 2008 Sep 4.
4
Neurotrophins and cytokines in neuronal plasticity.
Novartis Found Symp. 2008;289:222-33; discussion 233-40. doi: 10.1002/9780470751251.ch18.
5
Neural coding of stimulus concentration in the human olfactory and intranasal trigeminal systems.
Neuroscience. 2008 Jun 23;154(2):832-8. doi: 10.1016/j.neuroscience.2008.03.079. Epub 2008 Apr 11.
6
Molecular and cellular limits to somatosensory specificity.
Mol Pain. 2008 Apr 18;4:14. doi: 10.1186/1744-8069-4-14.
7
New insight into stimulus-induced plasticity of the olfactory epithelium in Mus musculus by quantitative proteomics.
J Proteome Res. 2008 Apr;7(4):1594-605. doi: 10.1021/pr7005796. Epub 2008 Mar 13.
8
Gastrin-releasing peptide and pruritus: more than just scratching the surface.
J Hepatol. 2008 Apr;48(4):681-3. doi: 10.1016/j.jhep.2008.01.007. Epub 2008 Jan 28.
9
The roles of sodium channels in nociception: Implications for mechanisms of pain.
Pain. 2007 Oct;131(3):243-257. doi: 10.1016/j.pain.2007.07.026. Epub 2007 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验