Duret Laurent, Galtier Nicolas
Université de Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622, Villeurbanne, France.
Annu Rev Genomics Hum Genet. 2009;10:285-311. doi: 10.1146/annurev-genom-082908-150001.
Recombination is typically thought of as a symmetrical process resulting in large-scale reciprocal genetic exchanges between homologous chromosomes. Recombination events, however, are also accompanied by short-scale, unidirectional exchanges known as gene conversion in the neighborhood of the initiating double-strand break. A large body of evidence suggests that gene conversion is GC-biased in many eukaryotes, including mammals and human. AT/GC heterozygotes produce more GC- than AT-gametes, thus conferring a population advantage to GC-alleles in high-recombining regions. This apparently unimportant feature of our molecular machinery has major evolutionary consequences. Structurally, GC-biased gene conversion explains the spatial distribution of GC-content in mammalian genomes-the so-called isochore structure. Functionally, GC-biased gene conversion promotes the segregation and fixation of deleterious AT --> GC mutations, thus increasing our genomic mutation load. Here we review the recent evidence for a GC-biased gene conversion process in mammals, and its consequences for genomic landscapes, molecular evolution, and human functional genomics.
重组通常被认为是一个对称过程,会导致同源染色体之间大规模的相互基因交换。然而,重组事件还伴随着短尺度的单向交换,即在起始双链断裂附近发生的所谓基因转换。大量证据表明,在包括哺乳动物和人类在内的许多真核生物中,基因转换存在GC偏向性。AT/GC杂合子产生的GC配子比AT配子更多,因此在高重组区域赋予了GC等位基因群体优势。我们分子机制中这个看似无关紧要的特征却有着重大的进化后果。在结构上,GC偏向性基因转换解释了哺乳动物基因组中GC含量的空间分布——即所谓的等容线结构。在功能上,GC偏向性基因转换促进了有害的AT→GC突变的分离和固定,从而增加了我们基因组的突变负荷。在此,我们综述了哺乳动物中GC偏向性基因转换过程的最新证据,以及它对基因组景观、分子进化和人类功能基因组学的影响。