Suppr超能文献

通过靶向蛋白质组学对酿酒酵母进行全动态范围蛋白质组分析。

Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics.

作者信息

Picotti Paola, Bodenmiller Bernd, Mueller Lukas N, Domon Bruno, Aebersold Ruedi

机构信息

Institute of Molecular Systems Biology, ETH Zurich, Zurich CH 8093, Switzerland.

出版信息

Cell. 2009 Aug 21;138(4):795-806. doi: 10.1016/j.cell.2009.05.051. Epub 2009 Aug 6.

Abstract

The rise of systems biology implied a growing demand for highly sensitive techniques for the fast and consistent detection and quantification of target sets of proteins across multiple samples. This is only partly achieved by classical mass spectrometry or affinity-based methods. We applied a targeted proteomics approach based on selected reaction monitoring (SRM) to detect and quantify proteins expressed to a concentration below 50 copies/cell in total S. cerevisiae digests. The detection range can be extended to single-digit copies/cell and to proteins undetected by classical methods. We illustrate the power of the technique by the consistent and fast measurement of a network of proteins spanning the entire abundance range over a growth time course of S. cerevisiae transiting through a series of metabolic phases. We therefore demonstrate the potential of SRM-based proteomics to provide assays for the measurement of any set of proteins of interest in yeast at high-throughput and quantitative accuracy.

摘要

系统生物学的兴起意味着对高灵敏度技术的需求日益增长,这些技术能够在多个样本中快速、一致地检测和定量目标蛋白质组。经典的质谱法或基于亲和力的方法仅部分满足了这一需求。我们应用了一种基于选择反应监测(SRM)的靶向蛋白质组学方法,以检测和定量在酿酒酵母总消化物中表达浓度低于50拷贝/细胞的蛋白质。检测范围可以扩展到个位数拷贝/细胞以及经典方法未检测到的蛋白质。我们通过在酿酒酵母经历一系列代谢阶段的生长时间过程中,对跨越整个丰度范围的蛋白质网络进行一致且快速的测量,展示了该技术的强大功能。因此,我们证明了基于SRM的蛋白质组学具有在高通量和定量准确性方面为测量酵母中任何感兴趣的蛋白质组提供检测方法的潜力。

相似文献

1
Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics.
Cell. 2009 Aug 21;138(4):795-806. doi: 10.1016/j.cell.2009.05.051. Epub 2009 Aug 6.
2
Reproducibility of combinatorial peptide ligand libraries for proteome capture evaluated by selected reaction monitoring.
J Proteomics. 2013 Aug 26;89:215-26. doi: 10.1016/j.jprot.2013.05.037. Epub 2013 Jun 7.
3
Reproducible and consistent quantification of the Saccharomyces cerevisiae proteome by SWATH-mass spectrometry.
Mol Cell Proteomics. 2015 Mar;14(3):739-49. doi: 10.1074/mcp.M113.035550. Epub 2015 Jan 5.
4
Quantitative mass spectrometry-based multiplexing compares the abundance of 5000 S. cerevisiae proteins across 10 carbon sources.
J Proteomics. 2016 Oct 4;148:85-93. doi: 10.1016/j.jprot.2016.07.005. Epub 2016 Jul 16.
5
Quantitative proteomics targeting classes of motif-containing peptides using immunoaffinity-based mass spectrometry.
Mol Cell Proteomics. 2012 Aug;11(8):342-54. doi: 10.1074/mcp.M111.016238. Epub 2012 Apr 27.
6
Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer.
Mol Cell Proteomics. 2012 Dec;11(12):1709-23. doi: 10.1074/mcp.O112.019802. Epub 2012 Sep 7.
8
The subcellular organisation of Saccharomyces cerevisiae.
Curr Opin Chem Biol. 2019 Feb;48:86-95. doi: 10.1016/j.cbpa.2018.10.026. Epub 2018 Nov 29.
9
A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis.
Nature. 2013 Feb 14;494(7436):266-70. doi: 10.1038/nature11835. Epub 2013 Jan 20.
10
The proteome of baker's yeast mitochondria.
Mitochondrion. 2017 Mar;33:15-21. doi: 10.1016/j.mito.2016.08.007. Epub 2016 Aug 14.

引用本文的文献

2
Mass-spectrometry-based proteomics: from single cells to clinical applications.
Nature. 2025 Feb;638(8052):901-911. doi: 10.1038/s41586-025-08584-0. Epub 2025 Feb 26.
4
Intrinsically disordered RNA-binding motifs cooperate to catalyze RNA folding and drive phase separation.
Nucleic Acids Res. 2024 Dec 11;52(22):14205-14228. doi: 10.1093/nar/gkae1107.
5
Top-down proteomics.
Nat Rev Methods Primers. 2024;4(1). doi: 10.1038/s43586-024-00318-2. Epub 2024 Jun 13.
7
Decoding Angiotensin Receptors: TOMAHAQ-Based Detection and Quantification of Angiotensin Type-1 and Type-2 Receptors.
J Am Heart Assoc. 2023 Sep 19;12(18):e030791. doi: 10.1161/JAHA.123.030791. Epub 2023 Sep 8.
8
Comprehensive quantitative modeling of translation efficiency in a genome-reduced bacterium.
Mol Syst Biol. 2023 Oct 12;19(10):e11301. doi: 10.15252/msb.202211301. Epub 2023 Aug 29.
9
GwAAP: A genome-wide amino acid coding-decoding quantitative proteomics system.
iScience. 2022 Nov 2;25(12):105471. doi: 10.1016/j.isci.2022.105471. eCollection 2022 Dec 22.

本文引用的文献

1
A database of mass spectrometric assays for the yeast proteome.
Nat Methods. 2008 Nov;5(11):913-4. doi: 10.1038/nmeth1108-913.
2
Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast.
Nature. 2008 Oct 30;455(7217):1251-4. doi: 10.1038/nature07341. Epub 2008 Sep 28.
3
Generation and validation of affinity reagents on a proteome-wide level.
J Mol Recognit. 2009 Mar-Apr;22(2):57-64. doi: 10.1002/jmr.891.
4
Affinity as a tool in life science.
Biotechniques. 2008 Apr;44(5):649-54. doi: 10.2144/000112803.
5
6
Targeted quantitative analysis of Streptococcus pyogenes virulence factors by multiple reaction monitoring.
Mol Cell Proteomics. 2008 Aug;7(8):1489-500. doi: 10.1074/mcp.M800032-MCP200. Epub 2008 Apr 13.
7
The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels.
Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15753-8. doi: 10.1073/pnas.0707476104. Epub 2007 Sep 26.
8
High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites.
Mol Cell Proteomics. 2007 Oct;6(10):1809-17. doi: 10.1074/mcp.M700132-MCP200. Epub 2007 Jul 20.
10
The implications of proteolytic background for shotgun proteomics.
Mol Cell Proteomics. 2007 Sep;6(9):1589-98. doi: 10.1074/mcp.M700029-MCP200. Epub 2007 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验