Suppr超能文献

多囊泡体生物发生过程中ESCRT-II-III界面的结构与功能

Structure and function of the ESCRT-II-III interface in multivesicular body biogenesis.

作者信息

Im Young Jun, Wollert Thomas, Boura Evzen, Hurley James H

机构信息

Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20892, USA.

出版信息

Dev Cell. 2009 Aug;17(2):234-43. doi: 10.1016/j.devcel.2009.07.008.

Abstract

The ESCRT-II-ESCRT-III interaction coordinates the sorting of ubiquitinated cargo with the budding and scission of intralumenal vesicles into multivesicular bodies. The interacting regions of these complexes were mapped to the second winged helix domain of human ESCRT-II subunit VPS25 and the first helix of ESCRT-III subunit VPS20. The crystal structure of this complex was determined at 2.0 A resolution. Residues involved in structural interactions explain the specificity of ESCRT-II for Vps20, and are critical for cargo sorting in vivo. ESCRT-II directly activates ESCRT-III-driven vesicle budding and scission in vitro via these structural interactions. VPS20 and ESCRT-II bind membranes with nanomolar affinity, explaining why binding to ESCRT-II is dispensable for the recruitment of Vps20 to membranes. Docking of the ESCRT-II-VPS20(2) supercomplex reveals a convex membrane-binding surface, suggesting a hypothesis for negative membrane curvature induction in the nascent intralumenal vesicle.

摘要

ESCRT-II与ESCRT-III的相互作用协调了泛素化货物的分选与腔内小泡出芽并切割形成多囊泡体的过程。这些复合物的相互作用区域被定位到人类ESCRT-II亚基VPS25的第二个翼状螺旋结构域和ESCRT-III亚基VPS20的第一个螺旋结构域。该复合物的晶体结构在2.0埃分辨率下得以确定。参与结构相互作用的残基解释了ESCRT-II对Vps20的特异性,并且对体内货物分选至关重要。在体外,ESCRT-II通过这些结构相互作用直接激活ESCRT-III驱动的小泡出芽和切割。VPS20和ESCRT-II以纳摩尔亲和力结合膜,这解释了为何Vps20募集到膜上时与ESCRT-II的结合并非必需。ESCRT-II-VPS20(2)超复合物的对接揭示了一个凸面的膜结合表面,这为新生腔内小泡中负膜曲率的诱导提出了一个假说。

相似文献

1
Structure and function of the ESCRT-II-III interface in multivesicular body biogenesis.
Dev Cell. 2009 Aug;17(2):234-43. doi: 10.1016/j.devcel.2009.07.008.
3
Membrane scission by the ESCRT-III complex.
Nature. 2009 Mar 12;458(7235):172-7. doi: 10.1038/nature07836. Epub 2009 Feb 22.
6
Molecular architecture and functional model of the complete yeast ESCRT-I heterotetramer.
Cell. 2007 May 4;129(3):485-98. doi: 10.1016/j.cell.2007.03.016. Epub 2007 Apr 19.
7
Crystal structure of subunit VPS25 of the endosomal trafficking complex ESCRT-II.
BMC Struct Biol. 2004 Dec 4;4(1):10. doi: 10.1186/1472-6807-4-10.
8
Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex.
Dev Cell. 2008 Jun;14(6):902-13. doi: 10.1016/j.devcel.2008.04.004.
9
Multivesicular endosome biogenesis in the absence of ESCRTs.
Traffic. 2009 Jul;10(7):925-37. doi: 10.1111/j.1600-0854.2009.00920.x. Epub 2009 Apr 10.
10
Structural insight into the ESCRT-I/-II link and its role in MVB trafficking.
EMBO J. 2007 Jan 24;26(2):600-12. doi: 10.1038/sj.emboj.7601501. Epub 2007 Jan 11.

引用本文的文献

1
The Arg/N-degron pathway mediates the secretion of apoptotic exosomes under oxidative stress in cancer cell.
iScience. 2025 May 10;28(6):112637. doi: 10.1016/j.isci.2025.112637. eCollection 2025 Jun 20.
2
Biogenesis and functional implications of extracellular vesicles in cancer metastasis.
Clin Transl Oncol. 2024 Dec 20. doi: 10.1007/s12094-024-03815-8.
3
Free energy calculations for membrane morphological transformations and insights to physical biology and oncology.
Methods Enzymol. 2024;701:359-386. doi: 10.1016/bs.mie.2024.03.028. Epub 2024 Apr 14.
4
Diversity, Origin and Evolution of the ESCRT Systems.
bioRxiv. 2024 Feb 7:2024.02.06.579148. doi: 10.1101/2024.02.06.579148.
5
Compartmentalization proteomics revealed endolysosomal protein network changes in a goat model of atrial fibrillation.
iScience. 2024 Mar 28;27(6):109609. doi: 10.1016/j.isci.2024.109609. eCollection 2024 Jun 21.
6
Diversity, origin, and evolution of the ESCRT systems.
mBio. 2024 Mar 13;15(3):e0033524. doi: 10.1128/mbio.00335-24. Epub 2024 Feb 21.
7
Dynamics of upstream ESCRT organization at the HIV-1 budding site.
Biophys J. 2023 Jul 11;122(13):2655-2674. doi: 10.1016/j.bpj.2023.05.020. Epub 2023 May 22.
8
Biogenesis of JC polyomavirus associated extracellular vesicles.
J Extracell Biol. 2022 May;1(5). doi: 10.1002/jex2.43. Epub 2022 Apr 3.
9
Stepwise remodeling and subcompartment formation in individual vesicles by three ESCRT-III proteins.
iScience. 2022 Dec 8;26(1):105765. doi: 10.1016/j.isci.2022.105765. eCollection 2023 Jan 20.

本文引用的文献

1
Phaser crystallographic software.
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. doi: 10.1107/S0021889807021206. Epub 2007 Jul 13.
2
The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins.
Nature. 2009 Mar 26;458(7237):445-52. doi: 10.1038/nature07961.
3
Cell biology: Detached membrane bending.
Nature. 2009 Mar 12;458(7235):159-60. doi: 10.1038/458159a.
4
Membrane scission by the ESCRT-III complex.
Nature. 2009 Mar 12;458(7235):172-7. doi: 10.1038/nature07836. Epub 2009 Feb 22.
5
The ESCRT machinery: new functions in viral and cellular biology.
Biochem Soc Trans. 2009 Feb;37(Pt 1):195-9. doi: 10.1042/BST0370195.
6
Functional reconstitution of ESCRT-III assembly and disassembly.
Cell. 2009 Jan 9;136(1):97-109. doi: 10.1016/j.cell.2008.11.013.
8
Helical structures of ESCRT-III are disassembled by VPS4.
Science. 2008 Sep 5;321(5894):1354-7. doi: 10.1126/science.1161070. Epub 2008 Aug 7.
10
Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex.
Dev Cell. 2008 Jun;14(6):902-13. doi: 10.1016/j.devcel.2008.04.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验