Suppr超能文献

在胰腺β细胞系INS-1中,Cav1.2和Cav1.3与胰高血糖素样肽-1对葡萄糖刺激的胰岛素分泌的增强作用存在差异偶联。

Cav1.2 and Cav1.3 are differentially coupled to glucagon-like peptide-1 potentiation of glucose-stimulated insulin secretion in the pancreatic beta-cell line INS-1.

作者信息

Jacobo Sarah Melissa P, Guerra Marcy L, Hockerman Gregory H

机构信息

Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA.

出版信息

J Pharmacol Exp Ther. 2009 Nov;331(2):724-32. doi: 10.1124/jpet.109.158519. Epub 2009 Aug 26.

Abstract

The incretin peptides, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), potentiate glucose-stimulated insulin secretion (GSIS) and beta-cell proliferation and differentiation. Ca(2+) influx via voltage-gated L-type Ca(2+) channels is required for GLP-1 and GIP potentiation of GSIS. We investigated the role of the L-type Ca(2+) channels Ca(v)1.2 and Ca(v)1.3 in mediating GLP-1- and GIP-stimulated events in INS-1 cells and INS-1 cell lines expressing dihydropyridine-insensitive (DHPi) mutants of either Ca(v)1.2 or Ca(v)1.3. Ca(v)1.3/DHPi channels supported full potentiation of GSIS by GLP-1 (50 nM) compared with untransfected INS-1 cells. However, GLP-1-potentiated GSIS mediated by Ca(v)1.2/DHPi channels was markedly reduced compared with untransfected INS-1 cells. In contrast, GIP (10 nM) potentiation of GSIS mediated by both Ca(v)1.2/DHPi and Ca(v)1.3/DHPi channels was similar to that observed in untransfected INS-1 cells. Disruption of intracellular Ca(2+) release with thapsigargin, ryanodine, or 2-aminoethyldiphenylborate and inhibition of protein kinase A (PKA) or protein kinase C (PKC) significantly reduced GLP-1 potentiation of GSIS by Ca(v)1.3/DHPi channels and by endogenous L-type channels in INS-1 cells, but not by Ca(v)1.2/DHPi channels. Inhibition of glucose-stimulated phospholipase C activity with 1-(6-((17b-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122) did not inhibit potentiation of GSIS by GLP-1 in INS-1 cells. In contrast, wortmannin, an inhibitor of phosphatidylinositol 3-kinase, and 2'-amino-3'-methoxyflavone (PD98059), an inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase, both markedly inhibited GLP-1 potentiation of GSIS by endogenous channels in INS-1 cells and Ca(v)1.3/DHPi channels, but not by Ca(v)1.2/DHPi channels. Thus, Ca(v)1.3 is preferentially coupled to GLP-1 potentiation of GSIS in INS-1 cells via a mechanism that requires intact intracellular Ca(2+) stores, PKA and PKC activity, and activation of ERK1/2.

摘要

肠促胰岛素肽、葡萄糖依赖性促胰岛素多肽(GIP)和胰高血糖素样肽-1(GLP-1)可增强葡萄糖刺激的胰岛素分泌(GSIS)以及β细胞的增殖和分化。GLP-1和GIP增强GSIS需要通过电压门控L型Ca(2+)通道的Ca(2+)内流。我们研究了L型Ca(2+)通道Ca(v)1.2和Ca(v)1.3在介导GLP-1和GIP刺激INS-1细胞及表达Ca(v)1.2或Ca(v)1.3二氢吡啶不敏感(DHPi)突变体的INS-1细胞系中的事件中的作用。与未转染的INS-1细胞相比,Ca(v)1.3/DHPi通道支持GLP-1(50 nM)对GSIS的完全增强作用。然而,与未转染的INS-1细胞相比,由Ca(v)1.2/DHPi通道介导的GLP-1增强的GSIS明显降低。相反,Ca(v)1.2/DHPi和Ca(v)1.3/DHPi通道介导的GIP(10 nM)对GSIS的增强作用与未转染的INS-1细胞中观察到的相似。用毒胡萝卜素、ryanodine或2-氨基乙基二苯基硼酸盐破坏细胞内Ca(2+)释放以及抑制蛋白激酶A(PKA)或蛋白激酶C(PKC)可显著降低INS-1细胞中Ca(v)1.3/DHPi通道和内源性L型通道介导的GLP-1对GSIS的增强作用,但不影响Ca(v)1.2/DHPi通道。用1-(6-((17β-3-甲氧基雌甾-1,3,5(10)-三烯-17-基)氨基)己基)-1H-吡咯-2,5-二酮(U73122)抑制葡萄糖刺激的磷脂酶C活性并不抑制INS-1细胞中GLP-1对GSIS的增强作用。相反,磷脂酰肌醇3-激酶抑制剂渥曼青霉素和丝裂原活化蛋白激酶/细胞外信号调节激酶(ERK)激酶抑制剂2'-氨基-3'-甲氧基黄酮(PD98059)均显著抑制INS-1细胞内源性通道和Ca(v)1.3/DHPi通道介导的GLP-1对GSIS的增强作用,但不影响Ca(v)1.2/DHPi通道。因此,在INS-1细胞中,Ca(v)1.3通过一种需要完整细胞内Ca(2+)储存、PKA和PKC活性以及ERK1/2激活的机制优先与GLP-1增强GSIS相关联。

相似文献

7
Uncoupling of Cav1.2 from Ca(2+)-induced Ca(2+) release and SK channel regulation in pancreatic β-cells.
Mol Endocrinol. 2014 Apr;28(4):458-76. doi: 10.1210/me.2013-1094. Epub 2014 Feb 7.
10
A role of PLC/PKC-dependent pathway in GLP-1-stimulated insulin secretion.
J Mol Med (Berl). 2017 Apr;95(4):361-368. doi: 10.1007/s00109-017-1508-6. Epub 2017 Jan 17.

引用本文的文献

1
Metabolic and Molecular Amplification of Insulin Secretion.
Adv Anat Embryol Cell Biol. 2024;239:117-139. doi: 10.1007/978-3-031-62232-8_5.
2
The Role of cAMP in Beta Cell Stimulus-Secretion and Intercellular Coupling.
Cells. 2021 Jul 1;10(7):1658. doi: 10.3390/cells10071658.
3
The therapeutic potential of GLP-1 receptor biased agonism.
Br J Pharmacol. 2022 Feb;179(4):492-510. doi: 10.1111/bph.15497. Epub 2021 May 20.
6
Trace amine-associated receptor 1 (TAAR1) promotes anti-diabetic signaling in insulin-secreting cells.
J Biol Chem. 2019 Mar 22;294(12):4401-4411. doi: 10.1074/jbc.RA118.005464. Epub 2019 Jan 22.
8
A role of PLC/PKC-dependent pathway in GLP-1-stimulated insulin secretion.
J Mol Med (Berl). 2017 Apr;95(4):361-368. doi: 10.1007/s00109-017-1508-6. Epub 2017 Jan 17.
9
Elevated Basal Insulin Secretion in Type 2 Diabetes Caused by Reduced Plasma Membrane Cholesterol.
Mol Endocrinol. 2016 Oct;30(10):1059-1069. doi: 10.1210/me.2016-1023. Epub 2016 Aug 17.
10

本文引用的文献

2
Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP.
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19333-8. doi: 10.1073/pnas.0707054104. Epub 2007 Nov 26.
3
Vesicle pools and synapsins: new insights into old enigmas.
Brain Cell Biol. 2006 Jun;35(2-3):107-15. doi: 10.1007/s11068-007-9013-4. Epub 2007 Oct 4.
4
Glucose-stimulated Cdc42 signaling is essential for the second phase of insulin secretion.
J Biol Chem. 2007 Mar 30;282(13):9536-9546. doi: 10.1074/jbc.M610553200. Epub 2007 Feb 8.
5
Glucagon-like peptide 1 activates protein kinase C through Ca2+-dependent activation of phospholipase C in insulin-secreting cells.
J Biol Chem. 2006 Sep 29;281(39):28499-507. doi: 10.1074/jbc.M604291200. Epub 2006 Jul 26.
6
Role of phosphatidylinositol 3-kinasegamma in the beta-cell: interactions with glucagon-like peptide-1.
Endocrinology. 2006 Jul;147(7):3318-25. doi: 10.1210/en.2006-0155. Epub 2006 Mar 30.
8
Extracellular signal-regulated kinase 1 interacts with and phosphorylates CdGAP at an important regulatory site.
Mol Cell Biol. 2005 Aug;25(15):6314-29. doi: 10.1128/MCB.25.15.6314-6329.2005.
9
Oleic acid interacts with GPR40 to induce Ca2+ signaling in rat islet beta-cells: mediation by PLC and L-type Ca2+ channel and link to insulin release.
Am J Physiol Endocrinol Metab. 2005 Oct;289(4):E670-7. doi: 10.1152/ajpendo.00035.2005. Epub 2005 May 24.
10
A cAMP and Ca2+ coincidence detector in support of Ca2+-induced Ca2+ release in mouse pancreatic beta cells.
J Physiol. 2005 Jul 1;566(Pt 1):173-88. doi: 10.1113/jphysiol.2005.087510. Epub 2005 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验