Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239-3098, USA.
Structure. 2009 Oct 14;17(10):1356-67. doi: 10.1016/j.str.2009.08.014.
Arginine kinase catalyzes reversible phosphoryl transfer between ATP and arginine, buffering cellular ATP concentrations. Structures of substrate-free and -bound enzyme have highlighted a range of conformational changes thought to occur during the catalytic cycle. Here, NMR is used to characterize the intrinsic backbone dynamics over multiple timescales. Relaxation dispersion indicates rigid-body motion of the N-terminal domain and flexible dynamics in the I182-G209 loop, both at millisecond rates commensurate with k(cat), implying that either might be rate limiting upon catalysis. Lipari-Szabo analysis indicates backbone flexibility on the nanosecond timescale in the V308-V322 loop, while the rest of the enzyme is more rigid in this timescale. Thus, intrinsic dynamics are most prominent in regions that have been independently implicated in conformational changes. Substrate-free enzyme may sample an ensemble of different conformations, of which a subset is selected upon substrate binding, with critical active site residues appropriately configured for binding and catalysis.
精氨酸激酶催化 ATP 和精氨酸之间的可逆磷酸化转移,缓冲细胞内的 ATP 浓度。无底物和有底物酶的结构突出了一系列构象变化,这些变化被认为发生在催化循环中。在这里,NMR 用于在多个时间尺度上表征固有骨架动力学。弛豫分散表明 N 端结构域的刚体运动和 I182-G209 环中的柔性动力学,均以与 k(cat) 相当的毫秒速率发生,这意味着在催化时,任一个都可能是限速步骤。拉皮里-萨博分析表明 V308-V322 环中的骨架在纳秒时间尺度上具有柔韧性,而在该时间尺度下,其余酶则更具刚性。因此,固有动力学在那些独立涉及构象变化的区域最为突出。无底物酶可能会采样不同构象的混合物,其中一部分在底物结合时被选择,关键的活性位点残基适当地配置用于结合和催化。