Suppr超能文献

动态构象集合在生物分子识别中的作用。

The role of dynamic conformational ensembles in biomolecular recognition.

机构信息

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA.

出版信息

Nat Chem Biol. 2009 Nov;5(11):789-96. doi: 10.1038/nchembio.232.

Abstract

Molecular recognition is central to all biological processes. For the past 50 years, Koshland's 'induced fit' hypothesis has been the textbook explanation for molecular recognition events. However, recent experimental evidence supports an alternative mechanism. 'Conformational selection' postulates that all protein conformations pre-exist, and the ligand selects the most favored conformation. Following binding the ensemble undergoes a population shift, redistributing the conformational states. Both conformational selection and induced fit appear to play roles. Following binding by a primary conformational selection event, optimization of side chain and backbone interactions is likely to proceed by an induced fit mechanism. Conformational selection has been observed for protein-ligand, protein-protein, protein-DNA, protein-RNA and RNA-ligand interactions. These data support a new molecular recognition paradigm for processes as diverse as signaling, catalysis, gene regulation and protein aggregation in disease, which has the potential to significantly impact our views and strategies in drug design, biomolecular engineering and molecular evolution.

摘要

分子识别是所有生物过程的核心。在过去的 50 年里,Koshland 的“诱导契合”假说一直是分子识别事件的教科书解释。然而,最近的实验证据支持一种替代机制。“构象选择”假设所有蛋白质构象都预先存在,配体选择最有利的构象。结合后,整体经历了一个种群转移,重新分配构象状态。构象选择和诱导契合似乎都起作用。在通过主要构象选择事件结合后,侧链和骨架相互作用的优化可能通过诱导契合机制进行。已经观察到蛋白质-配体、蛋白质-蛋白质、蛋白质-DNA、蛋白质-RNA 和 RNA-配体相互作用中的构象选择。这些数据支持了一个新的分子识别范例,用于信号转导、催化、基因调控和疾病中的蛋白质聚集等多样化的过程,这有可能极大地影响我们在药物设计、生物分子工程和分子进化方面的观点和策略。

相似文献

1
The role of dynamic conformational ensembles in biomolecular recognition.
Nat Chem Biol. 2009 Nov;5(11):789-96. doi: 10.1038/nchembio.232.
2
Understanding biomolecular motion, recognition, and allostery by use of conformational ensembles.
Eur Biophys J. 2011 Dec;40(12):1339-55. doi: 10.1007/s00249-011-0754-8. Epub 2011 Nov 17.
3
Evidence of conformational selection driving the formation of ligand binding sites in protein-protein interfaces.
PLoS Comput Biol. 2014 Oct 2;10(10):e1003872. doi: 10.1371/journal.pcbi.1003872. eCollection 2014 Oct.
4
Single molecule insights on conformational selection and induced fit mechanism.
Biophys Chem. 2014 Feb;186:46-54. doi: 10.1016/j.bpc.2013.11.003. Epub 2013 Nov 13.
5
Pioneer in Molecular Biology: Conformational Ensembles in Molecular Recognition, Allostery, and Cell Function.
J Mol Biol. 2025 Jun 1;437(11):169044. doi: 10.1016/j.jmb.2025.169044. Epub 2025 Feb 25.
6
Conformational selection is a dominant mechanism of ligand binding.
Biochemistry. 2013 Aug 27;52(34):5723-9. doi: 10.1021/bi400929b. Epub 2013 Aug 15.
7
Conformational readout of RNA by small ligands.
RNA Biol. 2013 Jun;10(6):982-9. doi: 10.4161/rna.24682. Epub 2013 Apr 16.
8
Ligand-induced conformational changes and conformational dynamics in the solution structure of the lactose repressor protein.
J Mol Biol. 2008 Feb 15;376(2):466-81. doi: 10.1016/j.jmb.2007.11.067. Epub 2007 Nov 28.
9
Essential role of conformational selection in ligand binding.
Biophys Chem. 2014 Feb;186:13-21. doi: 10.1016/j.bpc.2013.09.003. Epub 2013 Sep 25.
10
How to Distinguish Conformational Selection and Induced Fit Based on Chemical Relaxation Rates.
PLoS Comput Biol. 2016 Sep 16;12(9):e1005067. doi: 10.1371/journal.pcbi.1005067. eCollection 2016 Sep.

引用本文的文献

1
A Sequence Motif Enables Widespread Use of Non-Canonical Redox Cofactors in Natural Enzymes.
bioRxiv. 2025 Aug 2:2025.08.01.668186. doi: 10.1101/2025.08.01.668186.
2
Drug resistance and tumor heterogeneity: cells and ensembles.
Biophys Rev. 2025 May 31;17(3):759-779. doi: 10.1007/s12551-025-01320-y. eCollection 2025 Jun.
3
Sequence-based virtual screening using transformers.
Nat Commun. 2025 Jul 28;16(1):6925. doi: 10.1038/s41467-025-61833-8.
5
Entropy tree networks of residue dynamics encode protein allostery.
bioRxiv. 2025 May 30:2025.05.28.656549. doi: 10.1101/2025.05.28.656549.
6
The Ensemble Basis of Allostery and Function: Insights from Models of Local Unfolding.
J Mol Biol. 2025 Jun 9:169287. doi: 10.1016/j.jmb.2025.169287.
7
Modulation of SARS-CoV-2 spike binding to ACE2 through conformational selection.
Nat Nanotechnol. 2025 Jun 10. doi: 10.1038/s41565-025-01908-1.
8
TRPM8 protein dynamics correlates with ligand structure and cellular function.
bioRxiv. 2025 May 15:2025.05.13.653789. doi: 10.1101/2025.05.13.653789.
9
TRPM8 Protein Dynamics Correlates with Ligand Structure and Cellular Function.
J Am Chem Soc. 2025 Jun 4;147(22):18460-18474. doi: 10.1021/jacs.4c09435. Epub 2025 May 27.

本文引用的文献

3
Trapping moving targets with small molecules.
Science. 2009 Apr 10;324(5924):213-5. doi: 10.1126/science.1169378.
4
Protein dynamism and evolvability.
Science. 2009 Apr 10;324(5924):203-7. doi: 10.1126/science.1169375.
7
Ligand-dependent equilibrium fluctuations of single calmodulin molecules.
Science. 2009 Jan 30;323(5914):633-7. doi: 10.1126/science.1166191.
9
Residual dipolar couplings as a tool to study molecular recognition of ubiquitin.
Biochem Soc Trans. 2008 Dec;36(Pt 6):1433-7. doi: 10.1042/BST0361433.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验