Suppr超能文献

活性氧物质在脊髓背角长时程增强中的作用。

Involvement of reactive oxygen species in long-term potentiation in the spinal cord dorsal horn.

机构信息

Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 310 University Blvd., Galveston, TX 77555-1069, USA.

出版信息

J Neurophysiol. 2010 Jan;103(1):382-91. doi: 10.1152/jn.90906.2008. Epub 2009 Nov 11.

Abstract

Recent studies suggest that reactive oxygen species (ROS) are functional messenger molecules in central sensitization, an underlying mechanism of persistent pain. Because spinal cord long-term potentiation (LTP) is the electrophysiological basis of central sensitization, this study investigates the effects of the increased or decreased spinal ROS levels on spinal cord LTP. Spinal cord LTP is induced by either brief, high-frequency stimulation (HFS) of a dorsal root at C-fiber intensity or superfusion of a ROS donor, tert-butyl hydroperoxide (t-BOOH), onto rat spinal cord slice preparations. Field excitatory postsynaptic potentials (fEPSPs) evoked by dorsal root stimulations with either Abeta- or C-fiber intensity are recorded from the superficial dorsal horn. HFS significantly increases the slope of both Abeta- and C-fiber evoked fEPSPs, thus suggesting LTP development. The induction, not the maintenance, of HFS-induced LTP is blocked by a N-methyl-D-aspartate (NMDA) receptor antagonist, D-2-amino-5-phosphonopentanoic acid (D-AP5). Both the induction and maintenance of LTP of Abeta-fiber-evoked fEPSPs are inhibited by a ROS scavenger, either N-tert-butyl-alpha-phenylnitrone or 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl. A ROS donor, t-BOOH-induced LTP is inhibited by N-tert-butyl-alpha-phenylnitrone but not by D-AP5. Furthermore, HFS-induced LTP and t-BOOH-induced LTP occlude each other. The data suggest that elevated ROS is a downstream event of NMDA receptor activation and an essential step for potentiation of synaptic excitability in the spinal dorsal horn.

摘要

最近的研究表明,活性氧(ROS)是中枢敏化(持续性疼痛的潜在机制)中的功能性信使分子。由于脊髓长时程增强(LTP)是中枢敏化的电生理学基础,因此本研究探讨了增加或减少脊髓 ROS 水平对脊髓 LTP 的影响。脊髓 LTP 可通过短暂的高频刺激(HFS)C 纤维强度的背根或 ROS 供体叔丁基过氧化氢(t-BOOH)在大鼠脊髓切片上诱导。用 Abeta 或 C 纤维强度的背根刺激诱发的场兴奋性突触后电位(fEPSP)从浅层背角记录。HFS 显著增加了 Abeta 和 C 纤维诱发的 fEPSP 的斜率,因此表明 LTP 的发展。HFS 诱导的 LTP 的诱导,而不是维持,被 N-甲基-D-天冬氨酸(NMDA)受体拮抗剂 D-2-氨基-5-磷戊酸(D-AP5)阻断。Abeta 纤维诱发的 fEPSP 的 LTP 的诱导和维持均被 ROS 清除剂 N-叔丁基-α-苯基硝酮或 4-羟基-2,2,6,6-四甲基哌啶-N-氧自由基抑制。ROS 供体 t-BOOH 诱导的 LTP 被 N-叔丁基-α-苯基硝酮抑制,但不受 D-AP5 抑制。此外,HFS 诱导的 LTP 和 t-BOOH 诱导的 LTP 相互抑制。数据表明,ROS 升高是 NMDA 受体激活的下游事件,也是脊髓背角突触兴奋性增强的必要步骤。

相似文献

1
Involvement of reactive oxygen species in long-term potentiation in the spinal cord dorsal horn.
J Neurophysiol. 2010 Jan;103(1):382-91. doi: 10.1152/jn.90906.2008. Epub 2009 Nov 11.
2
Reactive oxygen species enhance excitatory synaptic transmission in rat spinal dorsal horn neurons by activating TRPA1 and TRPV1 channels.
Neuroscience. 2013 Sep 5;247:201-12. doi: 10.1016/j.neuroscience.2013.05.023. Epub 2013 May 22.
7
Spinal cord long-term potentiation is attenuated by the NMDA-2B receptor antagonist Ro 25-6981.
Acta Physiol (Oxf). 2008 Mar;192(3):421-7. doi: 10.1111/j.1748-1716.2007.01756.x. Epub 2007 Oct 25.
10
The involvement of glia in long-term plasticity in the spinal dorsal horn of the rat.
Neuroreport. 2002 Oct 7;13(14):1781-4. doi: 10.1097/00001756-200210070-00017.

引用本文的文献

1
2
Spinal antinociceptive effect of the PnTx4(5-5) peptide is possibly mediated by the NMDA autoreceptors.
J Venom Anim Toxins Incl Trop Dis. 2024 Nov 25;30:e20230103. doi: 10.1590/1678-9199-JVATITD-2023-0103. eCollection 2024.
4
Metabolic regulation of single synaptic vesicle exo- and endocytosis in hippocampal synapses.
Cell Rep. 2024 May 28;43(5):114218. doi: 10.1016/j.celrep.2024.114218. Epub 2024 May 17.
6
Erythropoietin administration exerted neuroprotective effects against cardiac ischemia/reperfusion injury.
Curr Res Pharmacol Drug Discov. 2022 Aug 13;3:100124. doi: 10.1016/j.crphar.2022.100124. eCollection 2022.
8
Nicotinamide Adenine Dinucleotide Phosphate Oxidases Are Everywhere in Brain Disease, but Not in Huntington's Disease?
Front Aging Neurosci. 2021 Nov 5;13:736734. doi: 10.3389/fnagi.2021.736734. eCollection 2021.
10
The role of PPARγ in chemotherapy-evoked pain.
Neurosci Lett. 2021 May 14;753:135845. doi: 10.1016/j.neulet.2021.135845. Epub 2021 Mar 24.

本文引用的文献

1
Persistent pain is dependent on spinal mitochondrial antioxidant levels.
J Neurosci. 2009 Jan 7;29(1):159-68. doi: 10.1523/JNEUROSCI.3792-08.2009.
2
3
Nitric oxide (NO) serves as a retrograde messenger to activate neuronal NO synthase in the spinal cord via NMDA receptors.
Nitric Oxide. 2007 Aug;17(1):18-24. doi: 10.1016/j.niox.2007.04.004. Epub 2007 May 5.
4
Understanding LTP in pain pathways.
Mol Pain. 2007 Apr 3;3:9. doi: 10.1186/1744-8069-3-9.
5
6
Reactive oxygen species (ROS) are involved in enhancement of NMDA-receptor phosphorylation in animal models of pain.
Pain. 2007 Oct;131(3):262-271. doi: 10.1016/j.pain.2007.01.011. Epub 2007 Feb 20.
7
Superoxide, peroxynitrite and oxidative/nitrative stress in inflammation.
Biochem Soc Trans. 2006 Nov;34(Pt 5):965-70. doi: 10.1042/BST0340965.
9
The role of calmodulin as a signal integrator for synaptic plasticity.
Nat Rev Neurosci. 2005 Apr;6(4):267-76. doi: 10.1038/nrn1647.
10
Peroxide detoxification by brain cells.
J Neurosci Res. 2005;79(1-2):157-65. doi: 10.1002/jnr.20280.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验