Suppr超能文献

在颞叶癫痫小鼠模型中,存活的 hilar 生长抑素中间神经元会增大、长出轴突,并与颗粒细胞形成新的突触。

Surviving hilar somatostatin interneurons enlarge, sprout axons, and form new synapses with granule cells in a mouse model of temporal lobe epilepsy.

作者信息

Zhang Wei, Yamawaki Ruth, Wen Xiling, Uhl Justin, Diaz Jessica, Prince David A, Buckmaster Paul S

机构信息

Department of Comparative Medicine, Stanford University, Stanford, California 94305, USA.

出版信息

J Neurosci. 2009 Nov 11;29(45):14247-56. doi: 10.1523/JNEUROSCI.3842-09.2009.

Abstract

In temporal lobe epilepsy, seizures initiate in or near the hippocampus, which frequently displays loss of neurons, including inhibitory interneurons. It is unclear whether surviving interneurons function normally, are impaired, or develop compensatory mechanisms. We evaluated GABAergic interneurons in the hilus of the dentate gyrus of epileptic pilocarpine-treated GIN mice, specifically a subpopulation of somatostatin interneurons that expresses enhanced green fluorescence protein (GFP). GFP-immunocytochemistry and stereological analyses revealed substantial loss of GFP-positive hilar neurons (GPHNs) but increased GFP-positive axon length per dentate gyrus in epileptic mice. Individual biocytin-labeled GPHNs in hippocampal slices from epileptic mice also had larger somata, more axon in the molecular layer, and longer dendrites than controls. Dual whole-cell patch recording was used to test for monosynaptic connections from hilar GPHNs to granule cells. Unitary IPSCs (uIPSCs) recorded in control and epileptic mice had similar average rise times, amplitudes, charge transfers, and decay times. However, the probability of finding monosynaptically connected pairs and evoking uIPSCs was 2.6 times higher in epileptic mice compared to controls. Together, these findings suggest that surviving hilar somatostatin interneurons enlarge, extend dendrites, sprout axon collaterals in the molecular layer, and form new synapses with granule cells. These epilepsy-related changes in cellular morphology and connectivity may be mechanisms for surviving hilar interneurons to inhibit more granule cells and compensate for the loss of vulnerable interneurons.

摘要

在颞叶癫痫中,癫痫发作起始于海马体或其附近,海马体经常出现神经元丢失,包括抑制性中间神经元。目前尚不清楚存活的中间神经元功能是否正常、是否受损或是否产生代偿机制。我们评估了经毛果芸香碱处理的癫痫GIN小鼠齿状回门区的GABA能中间神经元,特别是表达增强型绿色荧光蛋白(GFP)的生长抑素中间神经元亚群。GFP免疫细胞化学和体视学分析显示,癫痫小鼠中GFP阳性门区神经元(GPHNs)大量丢失,但每个齿状回中GFP阳性轴突长度增加。与对照组相比,癫痫小鼠海马切片中单个生物素标记的GPHNs也具有更大的胞体、分子层中更多的轴突和更长的树突。采用双细胞全细胞膜片钳记录来检测门区GPHNs与颗粒细胞之间的单突触连接。在对照组和癫痫小鼠中记录的单位抑制性突触后电流(uIPSCs)具有相似的平均上升时间、幅度、电荷转移和衰减时间。然而,与对照组相比,癫痫小鼠中发现单突触连接对并诱发uIPSCs的概率高2.6倍。总之,这些发现表明,存活的门区生长抑素中间神经元会增大、延伸树突、在分子层中长出轴突侧支,并与颗粒细胞形成新的突触。这些与癫痫相关的细胞形态和连接性变化可能是存活的门区中间神经元抑制更多颗粒细胞并补偿易损中间神经元丢失的机制。

相似文献

2
Rapamycin suppresses axon sprouting by somatostatin interneurons in a mouse model of temporal lobe epilepsy.
Epilepsia. 2011 Nov;52(11):2057-64. doi: 10.1111/j.1528-1167.2011.03253.x. Epub 2011 Aug 29.
3
Hilar somatostatin interneuron loss reduces dentate gyrus inhibition in a mouse model of temporal lobe epilepsy.
Epilepsia. 2016 Jun;57(6):977-83. doi: 10.1111/epi.13376. Epub 2016 Mar 31.
4
Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy.
J Neurosci. 2003 Mar 15;23(6):2440-52. doi: 10.1523/JNEUROSCI.23-06-02440.2003.
6
Preservation of perisomatic inhibitory input of granule cells in the epileptic human dentate gyrus.
Neuroscience. 2001;108(4):587-600. doi: 10.1016/s0306-4522(01)00446-8.
7
Surviving mossy cells enlarge and receive more excitatory synaptic input in a mouse model of temporal lobe epilepsy.
Hippocampus. 2015 May;25(5):594-604. doi: 10.1002/hipo.22396. Epub 2014 Dec 26.
8
Excitatory input onto hilar somatostatin interneurons is increased in a chronic model of epilepsy.
J Neurophysiol. 2010 Oct;104(4):2214-23. doi: 10.1152/jn.00147.2010. Epub 2010 Jul 14.

引用本文的文献

1
Distinct changes to hippocampal and medial entorhinal circuits emerge across the progression of cognitive deficits in epilepsy.
Cell Rep. 2025 Feb 25;44(2):115131. doi: 10.1016/j.celrep.2024.115131. Epub 2025 Jan 22.
3
Somatostatin interneuron fate-mapping and structure in a Pten knockout model of epilepsy.
Front Cell Neurosci. 2024 Oct 21;18:1474613. doi: 10.3389/fncel.2024.1474613. eCollection 2024.
7
Reclusive chandeliers: Functional isolation of dentate axo-axonic cells after experimental status epilepticus.
Prog Neurobiol. 2023 Dec;231:102542. doi: 10.1016/j.pneurobio.2023.102542. Epub 2023 Oct 26.
9
LINCs Are Vulnerable to Epileptic Insult and Fail to Provide Seizure Control via On-Demand Activation.
eNeuro. 2023 Feb 15;10(2). doi: 10.1523/ENEURO.0195-22.2022. Print 2023 Feb.
10
Adult Born Dentate Granule Cell Mediated Upregulation of Feedback Inhibition in a Mouse Model of Traumatic Brain Injury.
J Neurosci. 2022 Sep 14;42(37):7077-7093. doi: 10.1523/JNEUROSCI.2263-21.2022. Epub 2022 Aug 24.

本文引用的文献

1
Dysfunction of the dentate basket cell circuit in a rat model of temporal lobe epilepsy.
J Neurosci. 2009 Jun 17;29(24):7846-56. doi: 10.1523/JNEUROSCI.6199-08.2009.
2
Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures.
Proc Natl Acad Sci U S A. 2008 Apr 22;105(16):6179-84. doi: 10.1073/pnas.0801372105. Epub 2008 Mar 28.
3
Kainate modulates presynaptic GABA release from two vesicle pools.
J Neurosci. 2008 Jan 16;28(3):725-31. doi: 10.1523/JNEUROSCI.3625-07.2008.
5
Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy.
J Neurosci. 2007 Sep 12;27(37):9866-73. doi: 10.1523/JNEUROSCI.2761-07.2007.
9
Morphology and synaptic input of substance P receptor-immunoreactive interneurons in control and epileptic human hippocampus.
Neuroscience. 2007 Jan 19;144(2):495-508. doi: 10.1016/j.neuroscience.2006.09.039. Epub 2006 Nov 13.
10
Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex.
PLoS Biol. 2006 Feb;4(2):e29. doi: 10.1371/journal.pbio.0040029. Epub 2005 Dec 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验