Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
J Mol Med (Berl). 2010 Jan;88(1):47-60. doi: 10.1007/s00109-009-0524-6. Epub 2009 Dec 1.
Right ventricular hypertrophy (RVH) and RV failure contribute to morbidity and mortality in pulmonary arterial hypertension (PAH). The cause of RV dysfunction and the feasibility of therapeutically targeting the RV are uncertain. We hypothesized that RV dysfunction and electrical remodeling in RVH result, in part, from a glycolytic shift in the myocyte, caused by activation of pyruvate dehydrogenase kinase (PDK). We studied two complementary rat models: RVH + PAH (induced by monocrotaline) and RVH + without PAH (induced by pulmonary artery banding (PAB)). Monocrotaline RVH reduced RV O(2)-consumption and enhanced glycolysis. RV 2-fluoro-2-deoxy-glucose uptake, Glut-1 expression, and pyruvate dehydrogenase phosphorylation increased in monocrotaline RVH. The RV monophasic action potential duration and QT(c) interval were prolonged due to decreased expression of repolarizing voltage-gated K(+) channels (Kv1.5, Kv4.2). In the RV working heart model, the PDK inhibitor, dichloroacetate, acutely increased glucose oxidation and cardiac work in monocrotaline RVH. Chronic dichloroacetate therapy improved RV repolarization and RV function in vivo and in the RV Langendorff model. In PAB-induced RVH, a similar reduction in cardiac output and glycolytic shift occurred and it too improved with dichloroacetate. In PAB-RVH, the benefit of dichloroacetate on cardiac output was approximately 1/3 that in monocrotaline RVH. The larger effects in monocrotaline RVH likely reflect dichloroacetate's dual metabolic benefits in that model: regression of vascular disease and direct effects on the RV. Reduction in RV function and electrical remodeling in two models of RVH relevant to human disease (PAH and pulmonic stenosis) result, in part, from a PDK-mediated glycolytic shift in the RV. PDK inhibition partially restores RV function and regresses RVH by restoring RV repolarization and enhancing glucose oxidation. Recognition that a PDK-mediated metabolic shift contributes to contractile and ionic dysfunction in RVH offers insight into the pathophysiology and treatment of RVH.
右心室肥厚(RVH)和 RV 衰竭导致肺动脉高压(PAH)的发病率和死亡率增加。RV 功能障碍的原因以及 RV 治疗靶点的可行性尚不确定。我们假设 RVH 中的 RV 功能障碍和电重构部分是由于肌细胞中丙酮酸脱氢酶激酶(PDK)的激活导致的糖酵解转移所致。我们研究了两种互补的大鼠模型:RVH+PAH(由单克隆毒素诱导)和 RVH+无 PAH(由肺动脉结扎(PAB)诱导)。单克隆毒素 RVH 降低 RV 耗氧量并增强糖酵解。RV 2-氟-2-脱氧葡萄糖摄取、Glut-1 表达和丙酮酸脱氢酶磷酸化在单克隆毒素 RVH 中增加。RV 单相动作电位时程和 QT(c)间期延长,原因是复极化电压门控 K(+)通道(Kv1.5、Kv4.2)的表达减少。在 RV 工作心脏模型中,PDK 抑制剂二氯乙酸(DCA)急性增加单克隆毒素 RVH 中的葡萄糖氧化和心脏工作量。慢性 DCA 治疗改善了体内和 RV Langendorff 模型中的 RV 复极和 RV 功能。在 PAB 诱导的 RVH 中,也发生了类似的心脏输出减少和糖酵解转移,并且 DCA 也改善了心脏输出。在 PAB-RVH 中,DCA 对心脏输出的益处约为单克隆毒素 RVH 的 1/3。在该模型中,DCA 的双重代谢益处可能导致更大的效果:血管疾病的消退和对 RV 的直接影响。两种与人类疾病相关的 RVH 模型(PAH 和肺动脉瓣狭窄)的 RV 功能和电重构减少部分是由于 RV 中的 PDK 介导的糖酵解转移所致。PDK 抑制部分通过恢复 RV 复极和增强葡萄糖氧化来恢复 RV 功能并使 RVH 消退。认识到 PDK 介导的代谢转移导致 RVH 中的收缩和离子功能障碍提供了对 RVH 病理生理学和治疗的深入了解。