Suppr超能文献

基于小波的医学数据库中基于内容的图像检索优化。

Wavelet optimization for content-based image retrieval in medical databases.

机构信息

Institut Telecom, Telecom Bretagne, UEB, Dpt ITI, Brest F-29200, France.

出版信息

Med Image Anal. 2010 Apr;14(2):227-41. doi: 10.1016/j.media.2009.11.004. Epub 2009 Dec 14.

Abstract

We propose in this article a content-based image retrieval (CBIR) method for diagnosis aid in medical fields. In the proposed system, images are indexed in a generic fashion, without extracting domain-specific features: a signature is built for each image from its wavelet transform. These image signatures characterize the distribution of wavelet coefficients in each subband of the decomposition. A distance measure is then defined to compare two image signatures and thus retrieve the most similar images in a database when a query image is submitted by a physician. To retrieve relevant images from a medical database, the signatures and the distance measure must be related to the medical interpretation of images. As a consequence, we introduce several degrees of freedom in the system so that it can be tuned to any pathology and image modality. In particular, we propose to adapt the wavelet basis, within the lifting scheme framework, and to use a custom decomposition scheme. Weights are also introduced between subbands. All these parameters are tuned by an optimization procedure, using the medical grading of each image in the database to define a performance measure. The system is assessed on two medical image databases: one for diabetic retinopathy follow up and one for screening mammography, as well as a general purpose database. Results are promising: a mean precision of 56.50%, 70.91% and 96.10% is achieved for these three databases, when five images are returned by the system.

摘要

我们在本文中提出了一种用于医学领域诊断辅助的基于内容的图像检索(CBIR)方法。在提出的系统中,图像以通用的方式进行索引,而无需提取特定于域的特征:从其小波变换为每张图像构建一个签名。这些图像签名表征了分解的每个子带中小波系数的分布。然后定义一个距离度量来比较两个图像签名,因此当医生提交查询图像时,可以在数据库中检索最相似的图像。为了从医学数据库中检索相关图像,签名和距离度量必须与图像的医学解释相关。因此,我们在系统中引入了几个自由度,以便可以针对任何病理和图像模式进行调整。具体来说,我们提议在提升方案框架内自适应地调整小波基,并使用自定义分解方案。子带之间也引入了权重。所有这些参数都通过使用数据库中每张图像的医学分级来定义性能度量的优化过程进行调整。该系统在三个医学图像数据库上进行了评估:一个用于糖尿病视网膜病变随访,一个用于乳房 X 光筛查,以及一个通用数据库。结果令人鼓舞:当系统返回五张图像时,这三个数据库的平均精度分别为 56.50%、70.91%和 96.10%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验