Suppr超能文献

微尺度电穿孔:临床应用的挑战与展望。

Microscale electroporation: challenges and perspectives for clinical applications.

机构信息

Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Integr Biol (Camb). 2009 Mar;1(3):242-51. doi: 10.1039/b819201d. Epub 2009 Jan 29.

Abstract

Microscale engineering plays a significant role in developing tools for biological applications by miniaturizing devices and providing controllable microenvironments for in vitro cell research. Miniaturized devices offer numerous benefits in comparison to their macroscale counterparts, such as lower use of expensive reagents, biomimetic environments, and the ability to manipulate single cells. Microscale electroporation is one of the main beneficiaries of microscale engineering as it provides spatial and temporal control of various electrical parameters. Microscale electroporation devices can be used to reduce limitations associated with the conventional electroporation approaches such as variations in the local pH, electric field distortion, sample contamination, and the difficulties in transfecting and maintaining the viability of desired cell types. Here, we present an overview of recent advances of the microscale electroporation methods and their applications in biology, as well as current challenges for its use for clinical applications. We categorize microscale electroporation into microchannel and microcapillary electroporation. Microchannel-based electroporation can be used for transfecting cells within microchannels under dynamic flow conditions in a controlled and high-throughput fashion. In contrast, microcapillary-based electroporation can be used for transfecting cells within controlled reaction chambers under static flow conditions. Using these categories we examine the use of microscale electroporation for clinical applications related to HIV-1, stem cells, cancer and other diseases and discuss the challenges in further advancing this technology for use in clinical medicine and biology.

摘要

微尺度工程通过缩小设备并为体外细胞研究提供可控的微环境,在开发生物学应用工具方面发挥着重要作用。与宏观设备相比,微缩设备具有许多优势,例如可以减少昂贵试剂的使用、提供仿生环境以及操纵单细胞的能力。微尺度电穿孔是微尺度工程的主要受益者之一,因为它可以对各种电参数进行时空控制。微尺度电穿孔设备可用于减少与传统电穿孔方法相关的限制,例如局部 pH 值变化、电场失真、样品污染以及转染和维持所需细胞类型活力的困难。在这里,我们概述了微尺度电穿孔方法的最新进展及其在生物学中的应用,以及其在临床应用中的当前挑战。我们将微尺度电穿孔分为微通道和微管电穿孔。基于微通道的电穿孔可用于在受控的高通量条件下在微通道内转染细胞,而基于微管的电穿孔可用于在静态流动条件下在受控反应室内转染细胞。使用这些类别,我们研究了微尺度电穿孔在与 HIV-1、干细胞、癌症和其他疾病相关的临床应用中的用途,并讨论了进一步推进该技术在临床医学和生物学中的应用所面临的挑战。

相似文献

1
Microscale electroporation: challenges and perspectives for clinical applications.
Integr Biol (Camb). 2009 Mar;1(3):242-51. doi: 10.1039/b819201d. Epub 2009 Jan 29.
2
Magnetic tweezers-based 3D microchannel electroporation for high-throughput gene transfection in living cells.
Small. 2015 Apr 17;11(15):1818-1828. doi: 10.1002/smll.201402564. Epub 2014 Dec 2.
3
Microsystem for transfection of exogenous molecules with spatio-temporal control into adherent cells.
Biosens Bioelectron. 2007 Jan 15;22(6):863-70. doi: 10.1016/j.bios.2006.03.013. Epub 2006 Apr 25.
5
Nanochannel electroporation delivers precise amounts of biomolecules into living cells.
Nat Nanotechnol. 2011 Oct 16;6(11):747-54. doi: 10.1038/nnano.2011.164.
7
Micronozzle array enhanced sandwich electroporation of embryonic stem cells.
Anal Chem. 2010 Jan 1;82(1):353-8. doi: 10.1021/ac902041h.
8
Design of a microchannel-nanochannel-microchannel array based nanoelectroporation system for precise gene transfection.
Small. 2014 Mar 12;10(5):1015-23. doi: 10.1002/smll.201300116. Epub 2013 Oct 31.
9
Transfection of cells using flow-through electroporation based on constant voltage.
Nat Protoc. 2011 Jul 21;6(8):1192-208. doi: 10.1038/nprot.2011.360.
10
Micro-/nanoscale electroporation.
Lab Chip. 2016 Oct 18;16(21):4047-4062. doi: 10.1039/c6lc00840b.

引用本文的文献

1
Efficient electroporation in primary cells with PEDOT:PSS electrodes.
Sci Adv. 2024 Oct 25;10(43):eado5042. doi: 10.1126/sciadv.ado5042.
2
Laser Machined Fiber-based Microprobe: Application in Microscale Electroporation.
Adv Fiber Mater. 2022 Aug;4(4):859-872. doi: 10.1007/s42765-022-00148-5. Epub 2022 Mar 23.
3
Collagen for neural tissue engineering: Materials, strategies, and challenges.
Mater Today Bio. 2023 May 2;20:100639. doi: 10.1016/j.mtbio.2023.100639. eCollection 2023 Jun.
5
Recent Advances in Microscale Electroporation.
Chem Rev. 2022 Jul 13;122(13):11247-11286. doi: 10.1021/acs.chemrev.1c00677. Epub 2022 Jun 23.
6
Hybrid analytical-numerical approach for investigation of differential effects in normal and cancer cells under electroporation.
RSC Adv. 2019 Dec 16;9(71):41518-41530. doi: 10.1039/c9ra07428g. eCollection 2019 Dec 13.
7
Ultralong-Time Recovery and Low-Voltage Electroporation for Biological Cell Monitoring Enabled by a Microsized Multipulse Framework.
ACS Omega. 2021 Dec 13;6(51):35325-35333. doi: 10.1021/acsomega.1c04257. eCollection 2021 Dec 28.
8
Photothermal Intracellular Delivery Using Gold Nanodisk Arrays.
ACS Mater Lett. 2020 Nov 2;2(11):1475-1483. doi: 10.1021/acsmaterialslett.0c00428. Epub 2020 Oct 12.
9
Genome editing in large animal models.
Mol Ther. 2021 Nov 3;29(11):3140-3152. doi: 10.1016/j.ymthe.2021.09.026. Epub 2021 Oct 1.
10
Recent Advances in the Molecular Beacon Technology for Live-Cell Single-Molecule Imaging.
iScience. 2020 Nov 13;23(12):101801. doi: 10.1016/j.isci.2020.101801. eCollection 2020 Dec 18.

本文引用的文献

1
Generation of mouse induced pluripotent stem cells without viral vectors.
Science. 2008 Nov 7;322(5903):949-53. doi: 10.1126/science.1164270. Epub 2008 Oct 9.
2
Induced pluripotent stem cells generated without viral integration.
Science. 2008 Nov 7;322(5903):945-9. doi: 10.1126/science.1162494. Epub 2008 Sep 25.
3
Irreversible electroporation attenuates neointimal formation after angioplasty.
IEEE Trans Biomed Eng. 2008 Sep;55(9):2268-74. doi: 10.1109/TBME.2008.923909.
5
Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs.
Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9522-7. doi: 10.1073/pnas.0801866105. Epub 2008 Jul 3.
6
Hypoxia-inducible factor-1alpha regulates matrix metalloproteinase-1 activity in human bone marrow-derived mesenchymal stem cells.
FEBS Lett. 2008 Jul 23;582(17):2615-9. doi: 10.1016/j.febslet.2008.06.033. Epub 2008 Jun 25.
8
Cell research with physically modified microfluidic channels: a review.
Lab Chip. 2008 Jul;8(7):1015-23. doi: 10.1039/b800835c. Epub 2008 May 15.
9
Microfluidic electroporation for selective release of intracellular molecules at the single-cell level.
Electrophoresis. 2008 Jul;29(14):2939-44. doi: 10.1002/elps.200700856.
10
Lab-on-a-chip technologies for proteomic analysis from isolated cells.
J R Soc Interface. 2008 Oct 6;5 Suppl 2(Suppl 2):S123-30. doi: 10.1098/rsif.2008.0169.focus.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验