Department of Biology, University of Florida, Gainesville, FL 32611, USA.
Proc Biol Sci. 2010 May 7;277(1686):1325-31. doi: 10.1098/rspb.2009.2134. Epub 2010 Jan 6.
Animals produce a tremendous diversity of sounds for communication to perform life's basic functions, from courtship and parental care to defence and foraging. Explaining this diversity in sound production is important for understanding the ecology, evolution and behaviour of species. Here, we present a theory of acoustic communication that shows that much of the heterogeneity in animal vocal signals can be explained based on the energetic constraints of sound production. The models presented here yield quantitative predictions on key features of acoustic signals, including the frequency, power and duration of signals. Predictions are supported with data from nearly 500 diverse species (e.g. insects, fishes, reptiles, amphibians, birds and mammals). These results indicate that, for all species, acoustic communication is primarily controlled by individual metabolism such that call features vary predictably with body size and temperature. These results also provide insights regarding the common energetic and neuromuscular constraints on sound production, and the ecological and evolutionary consequences of producing these sounds.
动物为了完成生命的基本功能而发出各种各样的声音用于交流,从求偶和育雏到防御和觅食。解释声音产生的这种多样性对于了解物种的生态学、进化和行为很重要。在这里,我们提出了一个声学通讯理论,该理论表明,动物声音信号的大部分异质性可以根据声音产生的能量约束来解释。这里提出的模型对声学信号的关键特征产生了定量预测,包括信号的频率、功率和持续时间。这些预测得到了近 500 种不同物种的数据支持(例如昆虫、鱼类、爬行动物、两栖动物、鸟类和哺乳动物)。这些结果表明,对于所有物种,声学通讯主要由个体代谢控制,因此叫声特征可根据体型和温度进行预测。这些结果还提供了有关声音产生的常见能量和神经肌肉限制以及产生这些声音的生态和进化后果的见解。