Suppr超能文献

声音通讯的能量基础。

The energetic basis of acoustic communication.

机构信息

Department of Biology, University of Florida, Gainesville, FL 32611, USA.

出版信息

Proc Biol Sci. 2010 May 7;277(1686):1325-31. doi: 10.1098/rspb.2009.2134. Epub 2010 Jan 6.

Abstract

Animals produce a tremendous diversity of sounds for communication to perform life's basic functions, from courtship and parental care to defence and foraging. Explaining this diversity in sound production is important for understanding the ecology, evolution and behaviour of species. Here, we present a theory of acoustic communication that shows that much of the heterogeneity in animal vocal signals can be explained based on the energetic constraints of sound production. The models presented here yield quantitative predictions on key features of acoustic signals, including the frequency, power and duration of signals. Predictions are supported with data from nearly 500 diverse species (e.g. insects, fishes, reptiles, amphibians, birds and mammals). These results indicate that, for all species, acoustic communication is primarily controlled by individual metabolism such that call features vary predictably with body size and temperature. These results also provide insights regarding the common energetic and neuromuscular constraints on sound production, and the ecological and evolutionary consequences of producing these sounds.

摘要

动物为了完成生命的基本功能而发出各种各样的声音用于交流,从求偶和育雏到防御和觅食。解释声音产生的这种多样性对于了解物种的生态学、进化和行为很重要。在这里,我们提出了一个声学通讯理论,该理论表明,动物声音信号的大部分异质性可以根据声音产生的能量约束来解释。这里提出的模型对声学信号的关键特征产生了定量预测,包括信号的频率、功率和持续时间。这些预测得到了近 500 种不同物种的数据支持(例如昆虫、鱼类、爬行动物、两栖动物、鸟类和哺乳动物)。这些结果表明,对于所有物种,声学通讯主要由个体代谢控制,因此叫声特征可根据体型和温度进行预测。这些结果还提供了有关声音产生的常见能量和神经肌肉限制以及产生这些声音的生态和进化后果的见解。

相似文献

1
The energetic basis of acoustic communication.
Proc Biol Sci. 2010 May 7;277(1686):1325-31. doi: 10.1098/rspb.2009.2134. Epub 2010 Jan 6.
2
Neural mechanisms and behaviors for acoustic communication in teleost fish.
Prog Neurobiol. 2003 Jan;69(1):1-26. doi: 10.1016/s0301-0082(03)00004-2.
3
Comparative aspects of spatial localization of sound.
Physiol Rev. 1972 Jan;52(1):237-360. doi: 10.1152/physrev.1972.52.1.237.
4
A simple frequency-scaling rule for animal communication.
J Acoust Soc Am. 2004 May;115(5 Pt 1):2334-8. doi: 10.1121/1.1694997.
5
[Principles of the acoustic communication between humans and birds].
Izv Akad Nauk Ser Biol. 2004 Mar-Apr(2):191-9.
7
A multi-species repository of social networks.
Sci Data. 2019 Apr 29;6(1):44. doi: 10.1038/s41597-019-0056-z.
9
Energetic cost of calling: general constraints and species-specific differences.
J Evol Biol. 2010 Jul;23(7):1564-9. doi: 10.1111/j.1420-9101.2010.02005.x. Epub 2010 May 7.

引用本文的文献

1
Call variation and calling site preference of three sympatric frogs.
Curr Zool. 2024 Nov 28;71(4):492-503. doi: 10.1093/cz/zoae067. eCollection 2025 Aug.
2
An evolutionary model of rhythmic accelerando in animal vocal signalling.
PLoS Comput Biol. 2025 Apr 23;21(4):e1013011. doi: 10.1371/journal.pcbi.1013011. eCollection 2025 Apr.
3
4
Do bats' social vocalizations conform to Zipf's law and the Menzerath-Altmann law?
iScience. 2024 Jun 28;27(7):110401. doi: 10.1016/j.isci.2024.110401. eCollection 2024 Jul 19.
6
An allometric prior enhances acoustic niche partitioning signal.
J R Soc Interface. 2022 Dec;19(197):20220421. doi: 10.1098/rsif.2022.0421. Epub 2022 Dec 14.
7
Coevolution of social and communicative complexity in lemurs.
Philos Trans R Soc Lond B Biol Sci. 2022 Sep 26;377(1860):20210297. doi: 10.1098/rstb.2021.0297. Epub 2022 Aug 8.
8
A mechanism for punctuating equilibria during mammalian vocal development.
PLoS Comput Biol. 2022 Jun 13;18(6):e1010173. doi: 10.1371/journal.pcbi.1010173. eCollection 2022 Jun.
9
Arousal elevation drives the development of oscillatory vocal output.
J Neurophysiol. 2022 Jun 1;127(6):1519-1531. doi: 10.1152/jn.00007.2022. Epub 2022 Apr 27.
10
A cross-species framework to identify vocal learning abilities in mammals.
Philos Trans R Soc Lond B Biol Sci. 2022 Jan 3;377(1841):20200394. doi: 10.1098/rstb.2020.0394. Epub 2021 Nov 15.

本文引用的文献

1
FUNCTIONAL ANALYSIS OF SWIM-BLADDER MUSCLES ENGAGED IN SOUND PRODUCTION OF THE TOADFISH.
J Biophys Biochem Cytol. 1961 Aug 1;10(4):187-200. doi: 10.1083/jcb.10.4.187.
3
5
Bird song: superfast muscles control dove's trill.
Nature. 2004 Sep 9;431(7005):146. doi: 10.1038/431146a.
6
A simple frequency-scaling rule for animal communication.
J Acoust Soc Am. 2004 May;115(5 Pt 1):2334-8. doi: 10.1121/1.1694997.
8
Neural mechanisms and behaviors for acoustic communication in teleost fish.
Prog Neurobiol. 2003 Jan;69(1):1-26. doi: 10.1016/s0301-0082(03)00004-2.
9
Comparative trends in shortening velocity and force production in skeletal muscles.
Am J Physiol Regul Integr Comp Physiol. 2002 Aug;283(2):R368-78. doi: 10.1152/ajpregu.00689.2001.
10
Weakfish sonic muscle: influence of size, temperature and season.
J Exp Biol. 2002 Aug;205(Pt 15):2183-8. doi: 10.1242/jeb.205.15.2183.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验