Suppr超能文献

围产期和青春期前因素与遗传易感性在调节能量平衡的神经通路发育中的相互作用。

Interaction of perinatal and pre-pubertal factors with genetic predisposition in the development of neural pathways involved in the regulation of energy homeostasis.

机构信息

Neurology Service (127C), Veterans Administration Medical Center, and Department of Neurology and Neurosciences, New Jersey Medical School, E. Orange, Newark, NJ 07018-1095, USA.

出版信息

Brain Res. 2010 Sep 2;1350:10-7. doi: 10.1016/j.brainres.2009.12.085. Epub 2010 Jan 6.

Abstract

A majority of human obesity is inherited as a polygenic trait. Once obesity develops, over 90% of individuals repeatedly regain lost weight after dieting. Only surgical interventions offer long lasting weight loss. Thus, clinical data suggest that some individuals have a predisposition to develop and maintain an elevated body weight set-point once they are provided with sufficient calories to gain weight. This set-point is mediated by an integrated neural network that controls energy homeostasis. Unfortunately, currently available tools for identifying obesity-prone individuals and examining the functioning of these neural systems have insufficient resolution to identify specific neural factors that cause humans to develop and maintain the obese state. However, rodent models of polygenically inherited obesity allow us to investigate the factors that both predispose them to become obese and that prevent or enhance the development of such obesity. Maternal obesity during gestation and lactation in obesity-prone rodents enhances offspring obesity and alters their neural pathways involved in energy homeostasis regulation. Early postnatal exposure of obesity-resistant offspring to the milk of genetically obese dams alters their hypothalamic pathways involved in energy homeostasis causing them to become obese when fed a high fat diet as adults. Finally, short-term exercise begun in the early post-weaning period increases the sensitivity to the anorectic effects of leptin and protects obesity-prone offspring from becoming obese for months exercise cessation. Such studies suggest that early identification of obesity-prone humans and of the factors that can prevent them from becoming obese could provide an effective strategy for preventing the world wide epidemic of obesity.

摘要

大多数人类肥胖是作为多基因特征遗传的。一旦肥胖发展,超过 90%的个体在节食后会反复重新获得失去的体重。只有手术干预才能提供持久的减肥效果。因此,临床数据表明,一旦个体获得足够的卡路里来增加体重,他们就有发展和维持升高的体重基准的倾向。这个基准由控制能量平衡的综合神经网络介导。不幸的是,目前用于识别肥胖易感个体和检查这些神经系统功能的工具分辨率不足,无法确定导致人类发展和维持肥胖状态的具体神经因素。然而,多基因遗传肥胖的啮齿动物模型允许我们研究导致它们肥胖的因素,以及预防或增强肥胖发展的因素。肥胖易感啮齿动物在妊娠期和哺乳期的肥胖母亲会增加后代肥胖的风险,并改变其参与能量平衡调节的神经通路。肥胖抵抗的后代在出生后早期暴露于遗传性肥胖母鼠的乳汁中,会改变其参与能量平衡的下丘脑通路,使它们在成年后喂食高脂肪饮食时变得肥胖。最后,在断奶后早期开始的短期运动增加了对瘦素的厌食作用的敏感性,并使肥胖易感后代在几个月的运动停止后免于肥胖。这些研究表明,早期识别肥胖易感个体和可以预防他们肥胖的因素可能为预防全球肥胖流行提供有效的策略。

相似文献

2
Developmental gene x environment interactions affecting systems regulating energy homeostasis and obesity.
Front Neuroendocrinol. 2010 Jul;31(3):270-83. doi: 10.1016/j.yfrne.2010.02.005. Epub 2010 Mar 3.
3
Maternal obesity increases hypothalamic leptin receptor expression and sensitivity in juvenile obesity-prone rats.
Am J Physiol Regul Integr Comp Physiol. 2007 May;292(5):R1782-91. doi: 10.1152/ajpregu.00749.2006. Epub 2007 Jan 11.
4
Factors promoting and ameliorating the development of obesity.
Physiol Behav. 2005 Dec 15;86(5):633-9. doi: 10.1016/j.physbeh.2005.08.054. Epub 2005 Oct 17.
5
Synergy of nature and nurture in the development of childhood obesity.
Int J Obes (Lond). 2009 Apr;33 Suppl 1:S53-6. doi: 10.1038/ijo.2009.18.
6
Metabolic imprinting on genetically predisposed neural circuits perpetuates obesity.
Nutrition. 2000 Oct;16(10):909-15. doi: 10.1016/s0899-9007(00)00408-1.
7
Metabolic imprinting: critical impact of the perinatal environment on the regulation of energy homeostasis.
Philos Trans R Soc Lond B Biol Sci. 2006 Jul 29;361(1471):1107-21. doi: 10.1098/rstb.2006.1851.

引用本文的文献

1
Brainstem astrocytes control homeostatic regulation of caloric intake.
J Physiol. 2023 Feb;601(4):801-829. doi: 10.1113/JP283566. Epub 2023 Jan 25.
2
DMV extrasynaptic NMDA receptors regulate caloric intake in rats.
JCI Insight. 2021 May 10;6(9):139785. doi: 10.1172/jci.insight.139785.
3
Perinatal high-fat diet alters development of GABA receptor subunits in dorsal motor nucleus of vagus.
Am J Physiol Gastrointest Liver Physiol. 2019 Jul 1;317(1):G40-G50. doi: 10.1152/ajpgi.00079.2019. Epub 2019 May 1.
4
Role of astroglia in diet-induced central neuroplasticity.
J Neurophysiol. 2019 Apr 1;121(4):1195-1206. doi: 10.1152/jn.00823.2018. Epub 2019 Jan 30.
6
Acute high-fat diet upregulates glutamatergic signaling in the dorsal motor nucleus of the vagus.
Am J Physiol Gastrointest Liver Physiol. 2018 May 1;314(5):G623-G634. doi: 10.1152/ajpgi.00395.2017. Epub 2018 Jan 25.
7
Perinatal high fat diet increases inhibition of dorsal motor nucleus of the vagus neurons regulating gastric functions.
Neurogastroenterol Motil. 2018 Jan;30(1). doi: 10.1111/nmo.13150. Epub 2017 Aug 1.
8
Factors affecting human colostrum fatty acid profile: A case study.
PLoS One. 2017 Apr 14;12(4):e0175817. doi: 10.1371/journal.pone.0175817. eCollection 2017.
9
Maternal high-fat diet increases independent feeding in pre-weanling rat pups.
Physiol Behav. 2016 Apr 1;157:237-45. doi: 10.1016/j.physbeh.2016.02.010. Epub 2016 Feb 9.
10
Exposure to a high fat diet during the perinatal period alters vagal motoneurone excitability, even in the absence of obesity.
J Physiol. 2015 Jan 1;593(1):285-303. doi: 10.1113/jphysiol.2014.282806. Epub 2014 Dec 2.

本文引用的文献

1
Roles of amylin in satiation, adiposity and brain development.
Forum Nutr. 2010;63:64-74. doi: 10.1159/000264394. Epub 2009 Nov 27.
2
Mechanisms of amylin/leptin synergy in rodent models.
Endocrinology. 2010 Jan;151(1):143-52. doi: 10.1210/en.2009-0546. Epub 2009 Oct 29.
3
Effects of maternal genotype and diet on offspring glucose and fatty acid-sensing ventromedial hypothalamic nucleus neurons.
Am J Physiol Regul Integr Comp Physiol. 2009 Nov;297(5):R1351-7. doi: 10.1152/ajpregu.00370.2009. Epub 2009 Aug 26.
4
Genetic and dietary effects on dendrites in the rat hypothalamic ventromedial nucleus.
Physiol Behav. 2009 Oct 19;98(4):511-6. doi: 10.1016/j.physbeh.2009.08.005. Epub 2009 Aug 19.
5
Interaction of leptin and amylin in the long-term maintenance of weight loss in diet-induced obese rats.
Obesity (Silver Spring). 2010 Jan;18(1):21-6. doi: 10.1038/oby.2009.187. Epub 2009 Jun 18.
6
An expanded view of energy homeostasis: neural integration of metabolic, cognitive, and emotional drives to eat.
Physiol Behav. 2009 Jul 14;97(5):572-80. doi: 10.1016/j.physbeh.2009.02.010. Epub 2009 Feb 12.
7
Genetic imprinting: the paradigm of Prader-Willi and Angelman syndromes.
Endocr Dev. 2009;14:20-8. doi: 10.1159/000207473. Epub 2009 Feb 27.
8
Three weeks of postweaning exercise in DIO rats produces prolonged increases in central leptin sensitivity and signaling.
Am J Physiol Regul Integr Comp Physiol. 2009 Mar;296(3):R537-48. doi: 10.1152/ajpregu.90859.2008. Epub 2009 Jan 21.
10
Developmental changes in hypothalamic leptin receptor: relationship with the postnatal leptin surge and energy balance neuropeptides in the postnatal rat.
Am J Physiol Regul Integr Comp Physiol. 2009 Mar;296(3):R631-9. doi: 10.1152/ajpregu.90690.2008. Epub 2009 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验