Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, United States.
Curr Opin Cell Biol. 2010 Feb;22(1):57-67. doi: 10.1016/j.ceb.2009.12.010. Epub 2010 Jan 12.
Generation of motile force is one of the main functions of the eukaryotic kinetochore during cell division. In recent years, the KMN network of proteins (Ndc80 complex, Mis12 complex, and KNL-1 complex) has emerged as a highly conserved core microtubule-binding complex at the kinetochore. It plays a major role in coupling force generation to microtubule plus-end polymerization and depolymerization. In this review, we discuss current theoretical mechanisms of force generation, and then focus on emerging information about mechanistic contributions from the Ndc80 complex in eukaryotes and the microtubule-binding Dam1/DASH complex from fungi. New information has also become available from super-resolution light microscopy on the protein architecture of the kinetochore-microtubule attachment site in both budding yeast and humans, which provides further insight into the mechanism of force generation. We briefly discuss potential contributions of motors, other microtubule-associated proteins, and microtubule depolymerases. Using the above evidence, we present speculative models of force generation at the kinetochore.
力的产生是真核细胞有丝分裂过程中动粒的主要功能之一。近年来,蛋白质的 KMN 网络(Ndc80 复合物、Mis12 复合物和 KNL-1 复合物)作为动粒上高度保守的核心微管结合复合物出现。它在将力的产生与微管正端聚合和去聚合偶联方面起着主要作用。在这篇综述中,我们讨论了当前的力产生理论机制,然后重点介绍了来自真核生物的 Ndc80 复合物和真菌的微管结合 Dam1/DASH 复合物在机制贡献方面的新信息。在芽殖酵母和人类中,利用超分辨率荧光显微镜获得的关于动粒-微管连接部位的蛋白质结构的新信息,也进一步深入了解了力的产生机制。我们简要讨论了马达、其他微管相关蛋白和微管去聚合酶的潜在贡献。利用上述证据,我们提出了动粒力产生的推测模型。