Suppr超能文献

端对端动粒微管附着产生力的机制。

Mechanisms of force generation by end-on kinetochore-microtubule attachments.

机构信息

Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, United States.

出版信息

Curr Opin Cell Biol. 2010 Feb;22(1):57-67. doi: 10.1016/j.ceb.2009.12.010. Epub 2010 Jan 12.

Abstract

Generation of motile force is one of the main functions of the eukaryotic kinetochore during cell division. In recent years, the KMN network of proteins (Ndc80 complex, Mis12 complex, and KNL-1 complex) has emerged as a highly conserved core microtubule-binding complex at the kinetochore. It plays a major role in coupling force generation to microtubule plus-end polymerization and depolymerization. In this review, we discuss current theoretical mechanisms of force generation, and then focus on emerging information about mechanistic contributions from the Ndc80 complex in eukaryotes and the microtubule-binding Dam1/DASH complex from fungi. New information has also become available from super-resolution light microscopy on the protein architecture of the kinetochore-microtubule attachment site in both budding yeast and humans, which provides further insight into the mechanism of force generation. We briefly discuss potential contributions of motors, other microtubule-associated proteins, and microtubule depolymerases. Using the above evidence, we present speculative models of force generation at the kinetochore.

摘要

力的产生是真核细胞有丝分裂过程中动粒的主要功能之一。近年来,蛋白质的 KMN 网络(Ndc80 复合物、Mis12 复合物和 KNL-1 复合物)作为动粒上高度保守的核心微管结合复合物出现。它在将力的产生与微管正端聚合和去聚合偶联方面起着主要作用。在这篇综述中,我们讨论了当前的力产生理论机制,然后重点介绍了来自真核生物的 Ndc80 复合物和真菌的微管结合 Dam1/DASH 复合物在机制贡献方面的新信息。在芽殖酵母和人类中,利用超分辨率荧光显微镜获得的关于动粒-微管连接部位的蛋白质结构的新信息,也进一步深入了解了力的产生机制。我们简要讨论了马达、其他微管相关蛋白和微管去聚合酶的潜在贡献。利用上述证据,我们提出了动粒力产生的推测模型。

相似文献

1
Mechanisms of force generation by end-on kinetochore-microtubule attachments.
Curr Opin Cell Biol. 2010 Feb;22(1):57-67. doi: 10.1016/j.ceb.2009.12.010. Epub 2010 Jan 12.
2
The conserved KMN network constitutes the core microtubule-binding site of the kinetochore.
Cell. 2006 Dec 1;127(5):983-97. doi: 10.1016/j.cell.2006.09.039.
3
Stability of kinetochore-microtubule attachment and the role of different KMN network components in Drosophila.
Cytoskeleton (Hoboken). 2013 Oct;70(10):661-75. doi: 10.1002/cm.21131. Epub 2013 Sep 20.
5
Assembling the protein architecture of the budding yeast kinetochore-microtubule attachment using FRET.
Curr Biol. 2014 Jul 7;24(13):1437-46. doi: 10.1016/j.cub.2014.05.014. Epub 2014 Jun 12.
6
How the kinetochore couples microtubule force and centromere stretch to move chromosomes.
Nat Cell Biol. 2016 Apr;18(4):382-92. doi: 10.1038/ncb3323. Epub 2016 Mar 14.
8
Mechanism of Ska Recruitment by Ndc80 Complexes to Kinetochores.
Dev Cell. 2017 May 22;41(4):438-449.e4. doi: 10.1016/j.devcel.2017.04.020.
9
Regulation of outer kinetochore Ndc80 complex-based microtubule attachments by the central kinetochore Mis12/MIND complex.
Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):E5583-9. doi: 10.1073/pnas.1513882112. Epub 2015 Oct 1.
10
Molecular requirements for the formation of a kinetochore-microtubule interface by Dam1 and Ndc80 complexes.
J Cell Biol. 2013 Jan 7;200(1):21-30. doi: 10.1083/jcb.201210091. Epub 2012 Dec 31.

引用本文的文献

1
Substrate accessibility regulation of human TopIIa decatenation by cohesin.
Nat Commun. 2025 Aug 5;16(1):7200. doi: 10.1038/s41467-025-62505-3.
2
Robust microtubule dynamics facilitate low-tension kinetochore detachment in metaphase.
J Cell Biol. 2023 Aug 7;222(8). doi: 10.1083/jcb.202202085. Epub 2023 May 11.
4
Nanoscale structural organization and stoichiometry of the budding yeast kinetochore.
J Cell Biol. 2023 Apr 3;222(4). doi: 10.1083/jcb.202209094. Epub 2023 Jan 27.
5
Ultrafast Force-Clamp Spectroscopy of Microtubule-Binding Proteins.
Methods Mol Biol. 2022;2478:609-650. doi: 10.1007/978-1-0716-2229-2_22.
6
Dynamic movement and turnover of extracellular matrices during tissue development and maintenance.
Fly (Austin). 2022 Dec;16(1):248-274. doi: 10.1080/19336934.2022.2076539.
7
The Astrin-SKAP complex reduces friction at the kinetochore-microtubule interface.
Curr Biol. 2022 Jun 20;32(12):2621-2631.e3. doi: 10.1016/j.cub.2022.04.061. Epub 2022 May 16.
9
Kinetochore-microtubule coupling mechanisms mediated by the Ska1 complex and Cdt1.
Essays Biochem. 2020 Sep 4;64(2):337-347. doi: 10.1042/EBC20190075.

本文引用的文献

1
Ska3 is required for spindle checkpoint silencing and the maintenance of chromosome cohesion in mitosis.
Curr Biol. 2009 Sep 15;19(17):1467-72. doi: 10.1016/j.cub.2009.07.017. Epub 2009 Jul 30.
2
The life and miracles of kinetochores.
EMBO J. 2009 Sep 2;28(17):2511-31. doi: 10.1038/emboj.2009.173. Epub 2009 Jul 23.
3
Connecting with Ska, a key complex at the kinetochore-microtubule interface.
EMBO J. 2009 May 20;28(10):1375-7. doi: 10.1038/emboj.2009.124.
4
Protein architecture of the human kinetochore microtubule attachment site.
Cell. 2009 May 15;137(4):672-84. doi: 10.1016/j.cell.2009.03.035.
6
In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy.
Curr Biol. 2009 Apr 28;19(8):694-9. doi: 10.1016/j.cub.2009.02.056. Epub 2009 Apr 2.
7
Mimicking Ndc80 phosphorylation triggers spindle assembly checkpoint signalling.
EMBO J. 2009 Apr 22;28(8):1099-110. doi: 10.1038/emboj.2009.62. Epub 2009 Mar 19.
8
The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility.
Dev Cell. 2009 Mar;16(3):374-85. doi: 10.1016/j.devcel.2009.01.011.
10
Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates.
Science. 2009 Mar 6;323(5919):1350-3. doi: 10.1126/science.1167000. Epub 2009 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验