INSERM U740, Paris, France.
J Clin Invest. 2010 Feb;120(2):433-45. doi: 10.1172/JCI39733. Epub 2010 Jan 11.
Cerebral ischemic small vessel disease (SVD) is the leading cause of vascular dementia and a major contributor to stroke in humans. Dominant mutations in NOTCH3 cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a genetic archetype of cerebral ischemic SVD. Progress toward understanding the pathogenesis of this disease and developing effective therapies has been hampered by the lack of a good animal model. Here, we report the development of a mouse model for CADASIL via the introduction of a CADASIL-causing Notch3 point mutation into a large P1-derived artificial chromosome (PAC). In vivo expression of the mutated PAC transgene in the mouse reproduced the endogenous Notch3 expression pattern and main pathological features of CADASIL, including Notch3 extracellular domain aggregates and granular osmiophilic material (GOM) deposits in brain vessels, progressive white matter damage, and reduced cerebral blood flow. Mutant mice displayed attenuated myogenic responses and reduced caliber of brain arteries as well as impaired cerebrovascular autoregulation and functional hyperemia. Further, we identified a substantial reduction of white matter capillary density. These neuropathological changes occurred in the absence of either histologically detectable alterations in cerebral artery structure or blood-brain barrier breakdown. These studies provide in vivo evidence for cerebrovascular dysfunction and microcirculatory failure as key contributors to hypoperfusion and white matter damage in this genetic model of ischemic SVD.
脑缺血性小血管病(SVD)是血管性痴呆的主要原因,也是人类中风的主要原因。NOTCH3 中的显性突变导致伴有皮质下梗死和白质脑病的常染色体显性遗传性脑动脉病(CADASIL),这是脑缺血性 SVD 的遗传原型。由于缺乏良好的动物模型,对这种疾病发病机制的理解和开发有效疗法的进展受到了阻碍。在这里,我们通过将 CADASIL 引起的 Notch3 点突变引入大型 P1 衍生的人工染色体(PAC),报告了 CADASIL 小鼠模型的开发。在体内,突变的 PAC 转基因的表达再现了 CADASIL 的内源性 Notch3 表达模式和主要病理特征,包括脑血管中 Notch3 细胞外结构域聚集和颗粒性亲脂性物质(GOM)沉积、进行性白质损伤和脑血流减少。突变小鼠表现出血管平滑肌的反应减弱和脑动脉口径减小,以及血管自动调节和功能性充血受损。此外,我们还发现白质毛细血管密度显著降低。这些神经病理学变化发生在大脑动脉结构或血脑屏障破坏在组织学上没有检测到的情况下。这些研究为血管功能障碍和微循环衰竭作为该缺血性 SVD 遗传模型中低灌注和白质损伤的关键因素提供了体内证据。