Suppr超能文献

β-连环蛋白阻断 Kras 依赖性的小鼠腺泡重编程为胰腺癌前病变。

Beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice.

机构信息

Diabetes Center, Department of Medicine, UCSF, San Francisco, California 94143, USA.

出版信息

J Clin Invest. 2010 Feb;120(2):508-20. doi: 10.1172/JCI40045. Epub 2010 Jan 11.

Abstract

Cellular plasticity in adult organs is involved in both regeneration and carcinogenesis. WT mouse acinar cells rapidly regenerate following injury that mimics acute pancreatitis, a process characterized by transient reactivation of pathways involved in embryonic pancreatic development. In contrast, such injury promotes the development of pancreatic ductal adenocarcinoma (PDA) precursor lesions in mice expressing a constitutively active form of the GTPase, Kras, in the exocrine pancreas. The molecular environment that mediates acinar regeneration versus the development of PDA precursor lesions is poorly understood. Here, we used genetically engineered mice to demonstrate that mutant Kras promotes acinar-to-ductal metaplasia (ADM) and pancreatic cancer precursor lesion formation by blocking acinar regeneration following acute pancreatitis. Our results indicate that beta-catenin is required for efficient acinar regeneration. In addition, canonical beta-catenin signaling, a pathway known to regulate embryonic acinar development, is activated following acute pancreatitis. This regeneration-associated activation of beta-catenin signaling was not observed during the initiation of Kras-induced acinar-to-ductal reprogramming. Furthermore, stabilized beta-catenin signaling antagonized the ability of Kras to reprogram acini into PDA preneoplastic precursors. Therefore, these results suggest that beta-catenin signaling is a critical determinant of acinar plasticity and that it is inhibited during Kras-induced fate decisions that specify PDA precursors, highlighting the importance of temporal regulation of embryonic signaling pathways in the development of neoplastic cell fates.

摘要

成体器官中的细胞可塑性参与再生和癌变。WT 小鼠的腺泡细胞在模拟急性胰腺炎的损伤后迅速再生,这一过程的特征是参与胚胎胰腺发育的途径短暂重新激活。相比之下,在胰腺外分泌腺中表达持续激活形式的 GTPase Kras 的小鼠中,这种损伤会促进胰腺导管腺癌(PDA)前体病变的发展。介导腺泡再生与 PDA 前体病变发展的分子环境尚未得到充分理解。在这里,我们使用基因工程小鼠证明,突变 Kras 通过阻断急性胰腺炎后腺泡的再生,促进了腺泡到导管的化生(ADM)和胰腺癌前体病变的形成。我们的结果表明,β-catenin 是有效腺泡再生所必需的。此外,已知调节胚胎腺泡发育的经典β-catenin 信号通路在急性胰腺炎后被激活。在 Kras 诱导的腺泡到导管重编程的起始过程中没有观察到这种与再生相关的β-catenin 信号激活。此外,稳定的β-catenin 信号拮抗了 Kras 将腺泡重新编程为 PDA 前致癌前体的能力。因此,这些结果表明β-catenin 信号是腺泡可塑性的关键决定因素,并且在指定 PDA 前体的 Kras 诱导的命运决定中被抑制,突出了胚胎信号通路在肿瘤细胞命运发展中的时间调节的重要性。

相似文献

1
Beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice.
J Clin Invest. 2010 Feb;120(2):508-20. doi: 10.1172/JCI40045. Epub 2010 Jan 11.
2
PYK2 Is Involved in Premalignant Acinar Cell Reprogramming and Pancreatic Ductal Adenocarcinoma Maintenance by Phosphorylating β-Catenin.
Cell Mol Gastroenterol Hepatol. 2019;8(4):561-578. doi: 10.1016/j.jcmgh.2019.07.004. Epub 2019 Jul 19.
3
4
Numb regulates acinar cell dedifferentiation and survival during pancreatic damage and acinar-to-ductal metaplasia.
Gastroenterology. 2013 Nov;145(5):1088-1097.e8. doi: 10.1053/j.gastro.2013.07.027. Epub 2013 Jul 25.
5
YAP1 and TAZ Control Pancreatic Cancer Initiation in Mice by Direct Up-regulation of JAK-STAT3 Signaling.
Gastroenterology. 2016 Sep;151(3):526-39. doi: 10.1053/j.gastro.2016.05.006. Epub 2016 May 20.
6
NFATc1 Links EGFR Signaling to Induction of Sox9 Transcription and Acinar-Ductal Transdifferentiation in the Pancreas.
Gastroenterology. 2015 May;148(5):1024-1034.e9. doi: 10.1053/j.gastro.2015.01.033. Epub 2015 Jan 23.
7
Dynamic landscape of pancreatic carcinogenesis reveals early molecular networks of malignancy.
Gut. 2018 Jan;67(1):146-156. doi: 10.1136/gutjnl-2015-310913. Epub 2016 Sep 19.
8
Hes1 plays an essential role in Kras-driven pancreatic tumorigenesis.
Oncogene. 2019 May;38(22):4283-4296. doi: 10.1038/s41388-019-0718-5. Epub 2019 Jan 31.
10
Glycogen synthase kinase-3β ablation limits pancreatitis-induced acinar-to-ductal metaplasia.
J Pathol. 2017 Sep;243(1):65-77. doi: 10.1002/path.4928. Epub 2017 Jul 27.

引用本文的文献

4
HMG Box-containing Protein 1 (HBP1) Protects Against Pancreatic Injury in Acute Pancreatitis but Promotes Neoplastic Progression.
Cell Mol Gastroenterol Hepatol. 2025 May 20;19(9):101536. doi: 10.1016/j.jcmgh.2025.101536.
5
Unlocking the Genetic Secrets of Pancreatic Cancer: Allelic Imbalances in Tumor Evolution.
Cancers (Basel). 2025 Apr 4;17(7):1226. doi: 10.3390/cancers17071226.
6
FGFR2 Abrogation Intercepts Pancreatic Ductal Adenocarcinoma Development.
Cancer Res. 2025 Jun 2;85(11):1960-1977. doi: 10.1158/0008-5472.CAN-24-4576.
7
Tumor-infiltrating mast cells confer resistance to immunotherapy in pancreatic cancer.
iScience. 2024 Sep 30;27(11):111085. doi: 10.1016/j.isci.2024.111085. eCollection 2024 Nov 15.
8
Vitamin B protects necrosis of acinar cells in pancreatic tissues with acute pancreatitis.
MedComm (2020). 2024 Oct 15;5(11):e686. doi: 10.1002/mco2.686. eCollection 2024 Nov.
10
FRA1 controls acinar cell plasticity during murine Kras-induced pancreatic acinar to ductal metaplasia.
Dev Cell. 2024 Nov 18;59(22):3025-3042.e7. doi: 10.1016/j.devcel.2024.07.021. Epub 2024 Aug 22.

本文引用的文献

1
Ras activity levels control the development of pancreatic diseases.
Gastroenterology. 2009 Sep;137(3):1072-82, 1082.e1-6. doi: 10.1053/j.gastro.2009.05.052. Epub 2009 Jun 6.
2
Acute pancreatitis markedly accelerates pancreatic cancer progression in mice expressing oncogenic Kras.
Biochem Biophys Res Commun. 2009 May 8;382(3):561-5. doi: 10.1016/j.bbrc.2009.03.068. Epub 2009 Mar 16.
4
Loss of the acinar-restricted transcription factor Mist1 accelerates Kras-induced pancreatic intraepithelial neoplasia.
Gastroenterology. 2009 Apr;136(4):1368-78. doi: 10.1053/j.gastro.2008.12.066. Epub 2009 Jan 9.
5
Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion.
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3354-9. doi: 10.1073/pnas.0802864106. Epub 2009 Feb 10.
6
K-ras and Wnt signaling synergize to accelerate prostate tumorigenesis in the mouse.
Cancer Res. 2009 Jan 1;69(1):94-101. doi: 10.1158/0008-5472.CAN-08-2895.
7
Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia.
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18907-12. doi: 10.1073/pnas.0810111105. Epub 2008 Nov 21.
8
Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice.
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18913-8. doi: 10.1073/pnas.0810097105. Epub 2008 Nov 21.
9
Stabilization of beta-catenin induces pancreas tumor formation.
Gastroenterology. 2008 Oct;135(4):1288-300. doi: 10.1053/j.gastro.2008.06.089. Epub 2008 Jul 9.
10
Hedgehog signaling is required for effective regeneration of exocrine pancreas.
Gastroenterology. 2008 Aug;135(2):621-31. doi: 10.1053/j.gastro.2008.04.011. Epub 2008 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验