Centre of Cardiovascular Genetics, Department of Medicine, University College London, London WC1E 6JF.
BMJ. 2010 Jan 14;340:b4838. doi: 10.1136/bmj.b4838.
To assess the performance of a panel of common single nucleotide polymorphisms (genotypes) associated with type 2 diabetes in distinguishing incident cases of future type 2 diabetes (discrimination), and to examine the effect of adding genetic information to previously validated non-genetic (phenotype based) models developed to estimate the absolute risk of type 2 diabetes.
Workplace based prospective cohort study with three 5 yearly medical screenings.
5535 initially healthy people (mean age 49 years; 33% women), of whom 302 developed new onset type 2 diabetes over 10 years.
Non-genetic variables included in two established risk models-the Cambridge type 2 diabetes risk score (age, sex, drug treatment, family history of type 2 diabetes, body mass index, smoking status) and the Framingham offspring study type 2 diabetes risk score (age, sex, parental history of type 2 diabetes, body mass index, high density lipoprotein cholesterol, triglycerides, fasting glucose)-and 20 single nucleotide polymorphisms associated with susceptibility to type 2 diabetes. Cases of incident type 2 diabetes were defined on the basis of a standard oral glucose tolerance test, self report of a doctor's diagnosis, or the use of anti-diabetic drugs.
A genetic score based on the number of risk alleles carried (range 0-40; area under receiver operating characteristics curve 0.54, 95% confidence interval 0.50 to 0.58) and a genetic risk function in which carriage of risk alleles was weighted according to the summary odds ratios of their effect from meta-analyses of genetic studies (area under receiver operating characteristics curve 0.55, 0.51 to 0.59) did not effectively discriminate cases of diabetes. The Cambridge risk score (area under curve 0.72, 0.69 to 0.76) and the Framingham offspring risk score (area under curve 0.78, 0.75 to 0.82) led to better discrimination of cases than did genotype based tests. Adding genetic information to phenotype based risk models did not improve discrimination and provided only a small improvement in model calibration and a modest net reclassification improvement of about 5% when added to the Cambridge risk score but not when added to the Framingham offspring risk score.
The phenotype based risk models provided greater discrimination for type 2 diabetes than did models based on 20 common independently inherited diabetes risk alleles. The addition of genotypes to phenotype based risk models produced only minimal improvement in accuracy of risk estimation assessed by recalibration and, at best, a minor net reclassification improvement. The major translational application of the currently known common, small effect genetic variants influencing susceptibility to type 2 diabetes is likely to come from the insight they provide on causes of disease and potential therapeutic targets.
评估与 2 型糖尿病相关的常见单核苷酸多态性(基因型)在区分未来 2 型糖尿病(鉴别)方面的表现,并研究在先前验证的非遗传(基于表型)模型中添加遗传信息对估计 2 型糖尿病绝对风险的影响。
基于工作场所的前瞻性队列研究,共进行了 3 次每 5 年一次的医学筛查。
5535 名最初健康的人(平均年龄 49 岁;33%为女性),其中 302 人在 10 年内发生了新的 2 型糖尿病。
两个已建立的风险模型中包含的非遗传变量-剑桥 2 型糖尿病风险评分(年龄、性别、药物治疗、2 型糖尿病家族史、体重指数、吸烟状况)和弗雷明汉后代研究 2 型糖尿病风险评分(年龄、性别、父母 2 型糖尿病史、体重指数、高密度脂蛋白胆固醇、甘油三酯、空腹血糖)-以及与 2 型糖尿病易感性相关的 20 个单核苷酸多态性。新发 2 型糖尿病病例的定义是基于标准口服葡萄糖耐量试验、医生诊断报告或使用抗糖尿病药物。
基于携带的风险等位基因数量(范围 0-40;接受者操作特征曲线下面积 0.54,95%置信区间 0.50 至 0.58)的遗传评分和根据荟萃分析中遗传研究的汇总优势比对风险等位基因进行加权的遗传风险函数(接受者操作特征曲线下面积 0.55,0.51 至 0.59)并不能有效区分糖尿病病例。剑桥风险评分(曲线下面积 0.72,0.69 至 0.76)和弗雷明汉后代风险评分(曲线下面积 0.78,0.75 至 0.82)比基于基因型的检测能更好地区分病例。将遗传信息添加到基于表型的风险模型中并没有提高鉴别能力,并且仅在模型校准方面略有改善,当添加到剑桥风险评分时,仅适度提高了约 5%的净重新分类改善,但当添加到弗雷明汉后代风险评分时则没有改善。
基于表型的风险模型对 2 型糖尿病的鉴别能力优于基于 20 个独立遗传的糖尿病风险等位基因的模型。将基因型添加到基于表型的风险模型中仅对通过重新校准评估的风险估计准确性略有提高,并且在最佳情况下,仅能适度提高约 5%的净重新分类改善。目前已知的影响 2 型糖尿病易感性的常见、小效应遗传变异的主要转化应用可能来自于它们对疾病病因和潜在治疗靶点的了解。