Suppr超能文献

用于人类应用的转座子和转座酶系统。

A transposon and transposase system for human application.

机构信息

Department of Genetics, Cell Biology, and Development, Center for Genome Engineering, Institute of Human Genetics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.

出版信息

Mol Ther. 2010 Apr;18(4):674-83. doi: 10.1038/mt.2010.2. Epub 2010 Jan 26.

Abstract

The stable introduction of therapeutic transgenes into human cells can be accomplished using viral and nonviral approaches. Transduction with clinical-grade recombinant viruses offers the potential of efficient gene transfer into primary cells and has a record of therapeutic successes. However, widespread application for gene therapy using viruses can be limited by their initially high cost of manufacture at a limited number of production facilities as well as a propensity for nonrandom patterns of integration. The ex vivo application of transposon-mediated gene transfer now offers an alternative to the use of viral vectors. Clinical-grade DNA plasmids can be prepared at much reduced cost and with lower immunogenicity, and the integration efficiency can be improved by the transient coexpression of a hyperactive transposase. This has facilitated the design of human trials using the Sleeping Beauty (SB) transposon system to introduce a chimeric antigen receptor (CAR) to redirect the specificity of human T cells. This review examines the rationale and safety implications of application of the SB system to genetically modify T cells to be manufactured in compliance with current good manufacturing practice (cGMP) for phase I/II trials.

摘要

治疗性转基因可通过病毒和非病毒方法稳定地引入人体细胞。临床级重组病毒的转导具有将基因高效转移到原代细胞的潜力,并具有治疗成功的记录。然而,病毒基因治疗的广泛应用可能受到其最初高制造成本的限制,这些成本在有限数量的生产设施中产生,而且还存在非随机整合模式的倾向。转座子介导的基因转移的体外应用现在为使用病毒载体提供了一种替代方法。临床级 DNA 质粒的制备成本大大降低,免疫原性也降低,通过瞬时共表达超活性转座酶可以提高整合效率。这促进了使用 Sleeping Beauty (SB) 转座子系统设计人类试验的设计,该系统引入嵌合抗原受体 (CAR) 以重新定向人类 T 细胞的特异性。本文综述了应用 SB 系统对 T 细胞进行基因修饰以符合 I/II 期试验的现行良好生产规范 (cGMP) 的原理和安全性影响。

相似文献

1
A transposon and transposase system for human application.
Mol Ther. 2010 Apr;18(4):674-83. doi: 10.1038/mt.2010.2. Epub 2010 Jan 26.
5
Minicircle-Based Engineering of Chimeric Antigen Receptor (CAR) T Cells.
Recent Results Cancer Res. 2016;209:37-50. doi: 10.1007/978-3-319-42934-2_3.
6
Sleeping beauty system to redirect T-cell specificity for human applications.
J Immunother. 2013 Feb;36(2):112-23. doi: 10.1097/CJI.0b013e3182811ce9.
7
Comparison of lentiviral and sleeping beauty mediated αβ T cell receptor gene transfer.
PLoS One. 2013 Jun 28;8(6):e68201. doi: 10.1371/journal.pone.0068201. Print 2013.
8
Minicircles for CAR T Cell Production by Sleeping Beauty Transposition: A Technological Overview.
Methods Mol Biol. 2022;2521:25-39. doi: 10.1007/978-1-0716-2441-8_2.
10
Stable gene transfer and expression in human primary T cells by the Sleeping Beauty transposon system.
Blood. 2006 Jan 15;107(2):483-91. doi: 10.1182/blood-2005-05-2133. Epub 2005 Sep 27.

引用本文的文献

3
Mage transposon: a novel gene delivery system for mammalian cells.
Nucleic Acids Res. 2024 Mar 21;52(5):2724-2739. doi: 10.1093/nar/gkae048.
4
Transposon Insertions into Nucleolar DNA by an Engineered Transposase Localized in the Nucleolus.
Int J Mol Sci. 2023 Oct 7;24(19):14978. doi: 10.3390/ijms241914978.
5
Human Artificial Chromosomes and Their Transfer to Target Cells.
Acta Naturae. 2022 Jul-Sep;14(3):35-45. doi: 10.32607/actanaturae.11670.
6
CAR T-Cell-Based gene therapy for cancers: new perspectives, challenges, and clinical developments.
Front Immunol. 2022 Jul 22;13:925985. doi: 10.3389/fimmu.2022.925985. eCollection 2022.
7
The Past, Present, and Future of Non-Viral CAR T Cells.
Front Immunol. 2022 Jun 9;13:867013. doi: 10.3389/fimmu.2022.867013. eCollection 2022.
8
Progress of Transposon Vector System for Production of Recombinant Therapeutic Proteins in Mammalian Cells.
Front Bioeng Biotechnol. 2022 May 4;10:879222. doi: 10.3389/fbioe.2022.879222. eCollection 2022.
9
Engineered Sleeping Beauty transposase redirects transposon integration away from genes.
Nucleic Acids Res. 2022 Mar 21;50(5):2807-2825. doi: 10.1093/nar/gkac092.
10
The Promise of Personalized TCR-Based Cellular Immunotherapy for Cancer Patients.
Front Immunol. 2021 Jul 30;12:701636. doi: 10.3389/fimmu.2021.701636. eCollection 2021.

本文引用的文献

1
DNA-binding Specificity Is a Major Determinant of the Activity and Toxicity of Zinc-finger Nucleases.
Mol Ther. 2008 Feb;16(2):352-358. doi: 10.1038/sj.mt.6300357. Epub 2016 Dec 7.
2
Duration of expression and activity of Sleeping Beauty transposase in mouse liver following hydrodynamic DNA delivery.
Mol Ther. 2010 Oct;18(10):1796-802. doi: 10.1038/mt.2010.152. Epub 2010 Jul 13.
3
Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy.
Science. 2009 Nov 6;326(5954):818-23. doi: 10.1126/science.1171242.
4
Gene therapy deserves a fresh chance.
Nature. 2009 Oct 29;461(7268):1173. doi: 10.1038/4611173a.
5
Engineering lymphocyte subsets: tools, trials and tribulations.
Nat Rev Immunol. 2009 Oct;9(10):704-16. doi: 10.1038/nri2635.
6
Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity.
Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17469-74. doi: 10.1073/pnas.0907448106. Epub 2009 Sep 24.
7
Accepting risk in clinical research: is the gene therapy field becoming too risk-averse?
Mol Ther. 2009 Nov;17(11):1842-8. doi: 10.1038/mt.2009.223. Epub 2009 Sep 22.
10
Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors.
Mol Ther. 2009 Nov;17(11):1919-28. doi: 10.1038/mt.2009.179. Epub 2009 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验