Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
Biochemistry. 2010 Mar 9;49(9):2058-67. doi: 10.1021/bi902041j.
Human purine nucleoside phosphorylase (PNP) is a homotrimer binding tightly to the transition state analogues Immucillin-H (ImmH; K(d) = 56 pM) and DATMe-ImmH-Immucillin-H (DATMe-ImmH; K(d) = 8.6 pM). ImmH binds with a larger entropic penalty than DATMe-ImmH, a chemically more flexible inhibitor. The testable hypothesis is that PNP conformational states are more relaxed (dynamic) with DATMe-ImmH, despite tighter binding than with ImmH. PNP conformations are probed by peptide amide deuterium exchange (HDX) using liquid chromatography high-resolution Fourier transform ion cyclotron resonance mass spectrometry and by sedimentation rates. Catalytically equilibrating Michaelis complexes (PNP.PO(4).inosine <--> PNP.Hx.R-1-P) and inhibited complexes (PNP.PO(4).DATMe-ImmH and PNP.PO(4).ImmH) show protection from HDX at 9, 13, and 15 sites per subunit relative to resting PNP (PNP.PO(4)) in extended incubations. The PNP.PO(4).ImmH complex is more compact (by sedimentation rate) than the other complexes. HDX kinetic analysis of ligand-protected sites corresponds to peptides near the catalytic sites. HDX and sedimentation results establish that PNP protein conformation (dynamic motion) correlates more closely with entropy of binding than with affinity. Catalytically active turnover with saturated substrate sites causes less change in HDX and sedimentation rates than binding of transition state analogues. DATMe-ImmH more closely mimics the transition of human PNP than does ImmH and achieves strong binding interactions at the catalytic site while causing relatively modest alterations of the protein dynamic motion. Transition state analogues causing the most rigid, closed protein conformation are therefore not necessarily the most tightly bound. Close mimics of the transition state are hypothesized to retain enzymatic dynamic motions related to transition state formation.
人嘌呤核苷磷酸化酶(PNP)是一个紧密结合于过渡态类似物Immucillin-H(ImmH;K(d) = 56 pM)和DATMe-ImmH-Immucillin-H(DATMe-ImmH;K(d) = 8.6 pM)的同三聚体。ImmH 的结合具有较大的熵罚,而 DATMe-ImmH 是一种化学上更灵活的抑制剂。可测试的假设是,尽管与 ImmH 相比,PNP 与 DATMe-ImmH 的结合更紧密,但 PNP 的构象状态更为放松(动态)。通过使用液相色谱高分辨率傅里叶变换离子回旋共振质谱和沉降速率来探测 PNP 构象的肽酰胺氘交换(HDX)。在催化平衡的 Michaelis 复合物(PNP.PO(4).inosine <--> PNP.Hx.R-1-P)和抑制复合物(PNP.PO(4).DATMe-ImmH 和 PNP.PO(4).ImmH)中,相对于静息 PNP(PNP.PO(4)),每个亚基有 9、13 和 15 个位点受到 HDX 的保护,延长孵育时间。PNP.PO(4).ImmH 复合物比其他复合物更紧凑(通过沉降速率)。配体保护位点的 HDX 动力学分析与催化位点附近的肽相对应。HDX 和沉降结果表明,PNP 蛋白质构象(动态运动)与结合熵的相关性比与亲和力的相关性更密切。与过渡态类似物的结合相比,催化活性的饱和底物位点的周转导致 HDX 和沉降速率的变化较小。DATMe-ImmH 比 ImmH 更能模拟人 PNP 的转变,并且在催化位点上形成强的结合相互作用,同时对蛋白质动态运动产生相对适度的改变。因此,导致最刚性、最封闭蛋白质构象的过渡态类似物不一定是结合最紧密的。与过渡态的紧密类似物被假设为保留与过渡态形成相关的酶动态运动。