Suppr超能文献

用于 ChIP-chip 数据分析的隐藏伊辛模型。

A hidden Ising model for ChIP-chip data analysis.

机构信息

Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.

出版信息

Bioinformatics. 2010 Mar 15;26(6):777-83. doi: 10.1093/bioinformatics/btq032. Epub 2010 Jan 28.

Abstract

MOTIVATION

Chromatin immunoprecipitation (ChIP) coupled with tiling microarray (chip) experiments have been used in a wide range of biological studies such as identification of transcription factor binding sites and investigation of DNA methylation and histone modification. Hidden Markov models are widely used to model the spatial dependency of ChIP-chip data. However, parameter estimation for these models is typically either heuristic or suboptimal, leading to inconsistencies in their applications. To overcome this limitation and to develop an efficient software, we propose a hidden ferromagnetic Ising model for ChIP-chip data analysis.

RESULTS

We have developed a simple, but powerful Bayesian hierarchical model for ChIP-chip data via a hidden Ising model. Metropolis within Gibbs sampling algorithm is used to simulate from the posterior distribution of the model parameters. The proposed model naturally incorporates the spatial dependency of the data, and can be used to analyze data with various genomic resolutions and sample sizes. We illustrate the method using three publicly available datasets and various simulated datasets, and compare it with three closely related methods, namely TileMap HMM, tileHMM and BAC. We find that our method performs as well as TileMap HMM and BAC for the high-resolution data from Affymetrix platform, but significantly outperforms the other three methods for the low-resolution data from Agilent platform. Compared with the BAC method which also involves MCMC simulations, our method is computationally much more efficient.

AVAILABILITY

A software called iChip is freely available at http://www.bioconductor.org/.

CONTACT

moq@mskcc.org.

摘要

动机

染色质免疫沉淀(ChIP)与平铺微阵列(chip)实验已被广泛应用于各种生物学研究中,如转录因子结合位点的鉴定以及 DNA 甲基化和组蛋白修饰的研究。隐马尔可夫模型被广泛用于建模 ChIP-chip 数据的空间依赖性。然而,这些模型的参数估计通常是启发式的或次优的,导致其应用不一致。为了克服这一限制并开发一种高效的软件,我们提出了一种用于 ChIP-chip 数据分析的隐藏铁磁伊辛模型。

结果

我们通过隐藏的伊辛模型为 ChIP-chip 数据开发了一种简单但强大的贝叶斯层次模型。Metropolis 内部 Gibbs 抽样算法用于从模型参数的后验分布中模拟。所提出的模型自然地包含了数据的空间依赖性,并且可以用于分析具有各种基因组分辨率和样本大小的数据集。我们使用三个公开可用的数据集和各种模拟数据集来说明该方法,并将其与三种密切相关的方法(即 TileMap HMM、tileHMM 和 BAC)进行比较。我们发现,对于 Affymetrix 平台的高分辨率数据,我们的方法与 TileMap HMM 和 BAC 一样表现良好,但对于 Agilent 平台的低分辨率数据,我们的方法明显优于其他三种方法。与涉及 MCMC 模拟的 BAC 方法相比,我们的方法在计算上效率更高。

可用性

一个名为 iChip 的软件可在 http://www.bioconductor.org/ 免费获得。

联系方式

moq@mskcc.org

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验