Suppr超能文献

寡霉素诱导具有异质性生物能量组织的癌细胞中的生物能量适应。

Oligomycin-induced bioenergetic adaptation in cancer cells with heterogeneous bioenergetic organization.

机构信息

Department of Oncology, Wyeth Research, Pearl River, New York 10965, USA.

出版信息

J Biol Chem. 2010 Apr 23;285(17):12647-54. doi: 10.1074/jbc.M109.084194. Epub 2010 Jan 28.

Abstract

Cancer cells constantly adapt to oxidative phosphorylation (OXPHOS) suppression resulting from hypoxia or mitochondria defects. Under the OXPHOS suppression, AMP-activated protein kinase (AMPK) regulates global metabolism adjustments, but its activation has been found to be transient. Whether cells can maintain cellular ATP homeostasis and survive beyond the transient AMPK activation is not known. Here, we study the bioenergetic adaptation to the OXPHOS inhibitor oligomycin in a group of cancer cells. We found that oligomycin at 100 ng/ml completely inhibits OXPHOS activity in 1 h and induces various levels of glycolysis gains by 6 h, from which we calculate the bioenergetic organizations of cancer cells. In glycolysis-dominant cells, oligomycin does not induce much energy stress as measured by glycolysis acceleration, ATP imbalance, AMPK activation, AMPK substrate acetyl-CoA carboxylase phosphorylation at Ser(79), and cell growth inhibition. In OXPHOS-dependent LKB1 wild type cells, oligomycin induces 5-8% ATP drops and transient AMPK activation during the initial 1-2 h. After AMPK activation is completed, oligomycin-induced increase of acetyl-CoA carboxylase phosphorylation at Ser(79) is still detected, and cellular ATP is back at preoligomycin treatment levels by sustained elevation of glycolysis. Cell growth, however, is inhibited without an increase in cell death and alteration in cell cycle distribution. In OXPHOS-dependent LKB1-null cells, no AMPK activation by oligomycin is detected, yet cells still show a similar adaptation. We also demonstrate that the adaptation to oligomycin does not invoke activation of hypoxia-induced factor. Our data suggest that cancer cells may grow and survive persistent OXPHOS suppression through an as yet unidentified regulatory mechanism.

摘要

癌细胞不断适应由于缺氧或线粒体缺陷导致的氧化磷酸化(OXPHOS)抑制。在 OXPHOS 抑制下,AMP 激活的蛋白激酶(AMPK)调节全局代谢的调整,但已发现其激活是短暂的。在短暂的 AMPK 激活之外,细胞是否能够维持细胞内 ATP 稳态并存活尚不清楚。在这里,我们研究了一组癌细胞对 OXPHOS 抑制剂寡霉素的生物能适应。我们发现,100ng/ml 的寡霉素在 1 小时内完全抑制 OXPHOS 活性,并在 6 小时内诱导不同程度的糖酵解增益,从中我们计算出癌细胞的生物能组织。在糖酵解主导的细胞中,寡霉素不会像通过糖酵解加速、ATP 失衡、AMPK 激活、AMPK 底物乙酰辅酶 A 羧化酶磷酸化 Ser(79)和细胞生长抑制所测量的那样,引起太多的能量应激。在 OXPHOS 依赖的 LKB1 野生型细胞中,寡霉素在最初的 1-2 小时内诱导 5-8%的 ATP 下降和短暂的 AMPK 激活。在 AMPK 激活完成后,仍检测到寡霉素诱导的乙酰辅酶 A 羧化酶磷酸化 Ser(79)增加,并且通过持续升高的糖酵解使细胞内 ATP 恢复到寡霉素处理前的水平。然而,细胞生长受到抑制,而没有细胞死亡增加和细胞周期分布改变。在 OXPHOS 依赖的 LKB1 缺失细胞中,没有检测到寡霉素引起的 AMPK 激活,但细胞仍然表现出类似的适应。我们还证明,对寡霉素的适应不调用缺氧诱导因子的激活。我们的数据表明,癌细胞可能通过一种尚未确定的调节机制在持续的 OXPHOS 抑制下生长和存活。

相似文献

1
Oligomycin-induced bioenergetic adaptation in cancer cells with heterogeneous bioenergetic organization.
J Biol Chem. 2010 Apr 23;285(17):12647-54. doi: 10.1074/jbc.M109.084194. Epub 2010 Jan 28.
3
Effects of adenosine on myocardial glucose and palmitate metabolism after transient ischemia: role of 5'-AMP-activated protein kinase.
Am J Physiol Heart Circ Physiol. 2006 Oct;291(4):H1883-92. doi: 10.1152/ajpheart.01147.2005. Epub 2006 Apr 28.
5
CaMKKβ is involved in AMP-activated protein kinase activation by baicalin in LKB1 deficient cell lines.
PLoS One. 2012;7(10):e47900. doi: 10.1371/journal.pone.0047900. Epub 2012 Oct 22.
6
Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab.
Cancer Lett. 2017 Jan 1;384:39-49. doi: 10.1016/j.canlet.2016.09.020. Epub 2016 Sep 28.
7
Redox regulation of the AMP-activated protein kinase.
PLoS One. 2010 Nov 5;5(11):e15420. doi: 10.1371/journal.pone.0015420.
8
AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress.
Nature. 2012 May 9;485(7400):661-5. doi: 10.1038/nature11066.

引用本文的文献

2
Supinoxin blocks small cell lung cancer progression by inhibiting mitochondrial respiration through DDX5.
iScience. 2025 Mar 13;28(4):112219. doi: 10.1016/j.isci.2025.112219. eCollection 2025 Apr 18.
4
Megakaryocytes transfer mitochondria to bone marrow mesenchymal stromal cells to lower platelet activation.
J Clin Invest. 2025 Feb 27;135(8). doi: 10.1172/JCI189801. eCollection 2025 Apr 15.
5
Monitoring Cellular Energy Balance in Single Cells Using Fluorescent Biosensors for AMPK.
Methods Mol Biol. 2025;2882:47-79. doi: 10.1007/978-1-0716-4284-9_3.
6
SMAP3-ID for Identification of Endogenous Protein-Protein Interactions Reveals Regulation of Mitochondrial Activity by Lamins.
JACS Au. 2025 Jan 14;5(1):302-319. doi: 10.1021/jacsau.4c00988. eCollection 2025 Jan 27.
8
Amino Acid and Glucose Fermentation Maintain ATP Content in Mouse and Human Malignant Glioma Cells.
ASN Neuro. 2024;16(1):2422268. doi: 10.1080/17590914.2024.2422268. Epub 2024 Dec 2.
9
ATP Restoration by ATP-Deprived Cultured Primary Astrocytes.
Neurochem Res. 2024 Nov 16;50(1):13. doi: 10.1007/s11064-024-04276-9.
10
Understanding metabolic plasticity at single cell resolution.
Essays Biochem. 2024 Nov 18;68(3):273-281. doi: 10.1042/EBC20240002.

本文引用的文献

1
Regulation of cancer cell metabolism by hypoxia-inducible factor 1.
Semin Cancer Biol. 2009 Feb;19(1):12-6. doi: 10.1016/j.semcancer.2008.11.009. Epub 2008 Dec 9.
3
Tumor cell metabolism: cancer's Achilles' heel.
Cancer Cell. 2008 Jun;13(6):472-82. doi: 10.1016/j.ccr.2008.05.005.
4
ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis.
Science. 2008 May 2;320(5876):661-4. doi: 10.1126/science.1156906. Epub 2008 Apr 3.
5
The biology of cancer: metabolic reprogramming fuels cell growth and proliferation.
Cell Metab. 2008 Jan;7(1):11-20. doi: 10.1016/j.cmet.2007.10.002.
6
Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas.
Cancer Res. 2007 Oct 1;67(19):9013-7. doi: 10.1158/0008-5472.CAN-07-1678.
7
p53 regulates mitochondrial respiration.
Science. 2006 Jun 16;312(5780):1650-3. doi: 10.1126/science.1126863. Epub 2006 May 25.
8
AMPK and cell proliferation--AMPK as a therapeutic target for atherosclerosis and cancer.
J Physiol. 2006 Jul 1;574(Pt 1):63-71. doi: 10.1113/jphysiol.2006.108324. Epub 2006 Apr 13.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验