Department of Oncology, Wyeth Research, Pearl River, New York 10965, USA.
J Biol Chem. 2010 Apr 23;285(17):12647-54. doi: 10.1074/jbc.M109.084194. Epub 2010 Jan 28.
Cancer cells constantly adapt to oxidative phosphorylation (OXPHOS) suppression resulting from hypoxia or mitochondria defects. Under the OXPHOS suppression, AMP-activated protein kinase (AMPK) regulates global metabolism adjustments, but its activation has been found to be transient. Whether cells can maintain cellular ATP homeostasis and survive beyond the transient AMPK activation is not known. Here, we study the bioenergetic adaptation to the OXPHOS inhibitor oligomycin in a group of cancer cells. We found that oligomycin at 100 ng/ml completely inhibits OXPHOS activity in 1 h and induces various levels of glycolysis gains by 6 h, from which we calculate the bioenergetic organizations of cancer cells. In glycolysis-dominant cells, oligomycin does not induce much energy stress as measured by glycolysis acceleration, ATP imbalance, AMPK activation, AMPK substrate acetyl-CoA carboxylase phosphorylation at Ser(79), and cell growth inhibition. In OXPHOS-dependent LKB1 wild type cells, oligomycin induces 5-8% ATP drops and transient AMPK activation during the initial 1-2 h. After AMPK activation is completed, oligomycin-induced increase of acetyl-CoA carboxylase phosphorylation at Ser(79) is still detected, and cellular ATP is back at preoligomycin treatment levels by sustained elevation of glycolysis. Cell growth, however, is inhibited without an increase in cell death and alteration in cell cycle distribution. In OXPHOS-dependent LKB1-null cells, no AMPK activation by oligomycin is detected, yet cells still show a similar adaptation. We also demonstrate that the adaptation to oligomycin does not invoke activation of hypoxia-induced factor. Our data suggest that cancer cells may grow and survive persistent OXPHOS suppression through an as yet unidentified regulatory mechanism.
癌细胞不断适应由于缺氧或线粒体缺陷导致的氧化磷酸化(OXPHOS)抑制。在 OXPHOS 抑制下,AMP 激活的蛋白激酶(AMPK)调节全局代谢的调整,但已发现其激活是短暂的。在短暂的 AMPK 激活之外,细胞是否能够维持细胞内 ATP 稳态并存活尚不清楚。在这里,我们研究了一组癌细胞对 OXPHOS 抑制剂寡霉素的生物能适应。我们发现,100ng/ml 的寡霉素在 1 小时内完全抑制 OXPHOS 活性,并在 6 小时内诱导不同程度的糖酵解增益,从中我们计算出癌细胞的生物能组织。在糖酵解主导的细胞中,寡霉素不会像通过糖酵解加速、ATP 失衡、AMPK 激活、AMPK 底物乙酰辅酶 A 羧化酶磷酸化 Ser(79)和细胞生长抑制所测量的那样,引起太多的能量应激。在 OXPHOS 依赖的 LKB1 野生型细胞中,寡霉素在最初的 1-2 小时内诱导 5-8%的 ATP 下降和短暂的 AMPK 激活。在 AMPK 激活完成后,仍检测到寡霉素诱导的乙酰辅酶 A 羧化酶磷酸化 Ser(79)增加,并且通过持续升高的糖酵解使细胞内 ATP 恢复到寡霉素处理前的水平。然而,细胞生长受到抑制,而没有细胞死亡增加和细胞周期分布改变。在 OXPHOS 依赖的 LKB1 缺失细胞中,没有检测到寡霉素引起的 AMPK 激活,但细胞仍然表现出类似的适应。我们还证明,对寡霉素的适应不调用缺氧诱导因子的激活。我们的数据表明,癌细胞可能通过一种尚未确定的调节机制在持续的 OXPHOS 抑制下生长和存活。