Suppr超能文献

NeMo:Cytoscape 中的网络模块识别。

NeMo: Network Module identification in Cytoscape.

机构信息

Department of Biomedical Engineering and High-Throughput Biology Center, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA.

出版信息

BMC Bioinformatics. 2010 Jan 18;11 Suppl 1(Suppl 1):S61. doi: 10.1186/1471-2105-11-S1-S61.

Abstract

BACKGROUND

As the size of the known human interactome grows, biologists increasingly rely on computational tools to identify patterns that represent protein complexes and pathways. Previous studies have shown that densely connected network components frequently correspond to community structure and functionally related modules. In this work, we present a novel method to identify densely connected and bipartite network modules based on a log odds score for shared neighbours.

RESULTS

To evaluate the performance of our method (NeMo), we compare it to other widely used tools for community detection including kMetis, MCODE, and spectral clustering. We test these methods on a collection of synthetically constructed networks and the set of MIPS human complexes. We apply our method to the CXC chemokine pathway and find a high scoring functional module of 12 disconnected phospholipase isoforms.

CONCLUSION

We present a novel method that combines a unique neighbour-sharing score with hierarchical agglomerative clustering to identify diverse network communities. The approach is unique in that we identify both dense network and dense bipartite network structures in a single approach. Our results suggest that the performance of NeMo is better than or competitive with leading approaches on both real and synthetic datasets. We minimize model complexity and generalization error in the Bayesian spirit by integrating out nuisance parameters. An implementation of our method is freely available for download as a plugin to Cytoscape through our website and through Cytoscape itself.

摘要

背景

随着已知人类相互作用组的规模不断扩大,生物学家越来越依赖计算工具来识别代表蛋白质复合物和途径的模式。先前的研究表明,密集连接的网络组件通常对应于社区结构和功能相关的模块。在这项工作中,我们提出了一种基于共享邻居对数几率得分来识别密集连接和二分网络模块的新方法。

结果

为了评估我们的方法(NeMo)的性能,我们将其与其他广泛使用的社区检测工具(包括 kMetis、MCODE 和谱聚类)进行了比较。我们在一组合成构建的网络和 MIPS 人类复合物集中测试了这些方法。我们将我们的方法应用于 CXC 趋化因子途径,并发现了一个高得分的功能模块,其中包含 12 个不连续的磷脂酶同工酶。

结论

我们提出了一种新的方法,该方法将独特的邻居共享评分与层次聚类相结合,以识别不同的网络社区。该方法的独特之处在于,我们在单个方法中同时识别密集网络和密集二分网络结构。我们的结果表明,在真实和合成数据集上,NeMo 的性能优于或与领先方法相当。我们通过整合无关参数,以贝叶斯精神最小化模型复杂性和泛化误差。我们的方法的实现可通过我们的网站作为 Cytoscape 的插件免费下载,也可通过 Cytoscape 本身下载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48b6/3009535/cefbe67b3e03/1471-2105-11-S1-S61-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验