Suppr超能文献

BMPR1a 和 BMPR1b 信号在脊髓损伤后对神经胶质增生发挥相反的作用。

BMPR1a and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury.

机构信息

Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.

出版信息

J Neurosci. 2010 Feb 3;30(5):1839-55. doi: 10.1523/JNEUROSCI.4459-09.2010.

Abstract

Astrogliosis following spinal cord injury (SCI) involves an early hypertrophic response that is beneficial and a subsequent formation of a dense scar. We investigated the role of bone morphogenetic protein (BMP) signaling in gliosis after SCI and find that BMPR1a and BMPR1b signaling exerts opposing effects on hypertrophy. Conditional ablation of BMPR1a from glial fibrillary acidic protein (GFAP)-expressing cells leads to defective astrocytic hypertrophy, increased infiltration by inflammatory cells, and reduced axon density. BMPR1b-null mice conversely develop "hyperactive" reactive astrocytes and consequently have smaller lesion volumes. The effects of ablation of either receptor are reversed in the double knock-out animals. These findings indicate that BMPR1a and BMPR1b exert directly opposing effects on the initial reactive astrocytic hypertrophy. Also, BMPR1b knock-out mice have an attenuated glial scar in the chronic stages following injury, suggesting that it has a greater role in glial scar progression. To elucidate the differing roles of the two receptors in astrocytes, we examined the effects of ablation of either receptor in serum-derived astrocytes in vitro. We find that the two receptors exert opposing effects on the posttranscriptional regulation of astrocytic microRNA-21. Further, overexpression of microRNA-21 in wild-type serum-derived astrocytes causes a dramatic reduction in cell size accompanied by reduction in GFAP levels. Hence, regulation of microRNA-21 by BMP signaling provides a novel mechanism for regulation of astrocytic size. Targeting specific BMPR subunits for therapeutic purposes may thus provide an approach for manipulating gliosis and enhancing functional outcomes after SCI.

摘要

脊髓损伤 (SCI) 后的星形胶质细胞增生涉及早期的肥大反应,这是有益的,随后形成致密的瘢痕。我们研究了骨形态发生蛋白 (BMP) 信号在 SCI 后胶质增生中的作用,发现 BMPR1a 和 BMPR1b 信号对肥大有相反的作用。胶质纤维酸性蛋白 (GFAP) 表达细胞中 BMPR1a 的条件性缺失导致星形胶质细胞肥大缺陷、炎症细胞浸润增加和轴突密度降低。相反,BMPR1b 缺失小鼠会产生“过度活跃”的反应性星形胶质细胞,因此病变体积较小。两种受体缺失的动物的缺失效果是相反的。这些发现表明,BMPR1a 和 BMPR1b 对初始反应性星形胶质细胞肥大有直接相反的作用。此外,BMPR1b 敲除小鼠在损伤后的慢性阶段有一个减弱的神经胶质瘢痕,表明它在神经胶质瘢痕进展中具有更大的作用。为了阐明两种受体在星形胶质细胞中的不同作用,我们在体外研究了两种受体缺失对血清来源的星形胶质细胞的影响。我们发现,两种受体对星形胶质细胞 microRNA-21 的转录后调节有相反的作用。此外,在野生型血清衍生的星形胶质细胞中过表达 microRNA-21 会导致细胞大小显著减小,同时 GFAP 水平降低。因此,BMP 信号对 microRNA-21 的调节为星形胶质细胞大小的调节提供了一种新的机制。因此,针对特定的 BMPR 亚单位进行治疗可能为操纵 SCI 后的胶质增生和增强功能结果提供一种方法。

相似文献

1
BMPR1a and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury.
J Neurosci. 2010 Feb 3;30(5):1839-55. doi: 10.1523/JNEUROSCI.4459-09.2010.
3
STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury.
J Neurosci. 2008 Jul 9;28(28):7231-43. doi: 10.1523/JNEUROSCI.1709-08.2008.
5
microRNA-21 regulates astrocytic response following spinal cord injury.
J Neurosci. 2012 Dec 12;32(50):17935-47. doi: 10.1523/JNEUROSCI.3860-12.2012.
6
MicroRNA-145 as one negative regulator of astrogliosis.
Glia. 2015 Feb;63(2):194-205. doi: 10.1002/glia.22743. Epub 2014 Aug 20.
7
Glial scar and axonal regeneration in the CNS: lessons from GFAP and vimentin transgenic mice.
Acta Neurochir Suppl. 2004;89:87-92. doi: 10.1007/978-3-7091-0603-7_12.
9
EphA4 deficient mice maintain astroglial-fibrotic scar formation after spinal cord injury.
Exp Neurol. 2010 Jun;223(2):582-98. doi: 10.1016/j.expneurol.2010.02.005. Epub 2010 Feb 17.
10
The Complement Receptor C5aR Controls Acute Inflammation and Astrogliosis following Spinal Cord Injury.
J Neurosci. 2015 Apr 22;35(16):6517-31. doi: 10.1523/JNEUROSCI.5218-14.2015.

引用本文的文献

2
From Physiology to Pathology of Astrocytes: Highlighting Their Potential as Therapeutic Targets for CNS Injury.
Neurosci Bull. 2025 Jan;41(1):131-154. doi: 10.1007/s12264-024-01258-3. Epub 2024 Jul 30.
4
Reactive gliosis in traumatic brain injury: a comprehensive review.
Front Cell Neurosci. 2024 Feb 28;18:1335849. doi: 10.3389/fncel.2024.1335849. eCollection 2024.
5
MicroRNAs in spinal cord injury: A narrative review.
Front Mol Neurosci. 2023 Feb 2;16:1099256. doi: 10.3389/fnmol.2023.1099256. eCollection 2023.
6
Capacity of astrocytes to promote axon growth in the injured mammalian central nervous system.
Front Neurosci. 2022 Sep 20;16:955598. doi: 10.3389/fnins.2022.955598. eCollection 2022.
8
The Role of Bone Morphogenetic Protein 4 in Microglial Polarization in the Process of Neuropathic Pain.
J Inflamm Res. 2022 May 3;15:2803-2817. doi: 10.2147/JIR.S356531. eCollection 2022.
9
Hematogenous Macrophages: A New Therapeutic Target for Spinal Cord Injury.
Front Cell Dev Biol. 2021 Nov 24;9:767888. doi: 10.3389/fcell.2021.767888. eCollection 2021.
10
MicroRNA miR-21 Decreases Post-stroke Brain Damage in Rodents.
Transl Stroke Res. 2022 Jun;13(3):483-493. doi: 10.1007/s12975-021-00952-y. Epub 2021 Nov 18.

本文引用的文献

2
BMP signaling goes posttranscriptional in a microRNA sort of way.
Dev Cell. 2008 Aug;15(2):174-5. doi: 10.1016/j.devcel.2008.07.015.
3
STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury.
J Neurosci. 2008 Jul 9;28(28):7231-43. doi: 10.1523/JNEUROSCI.1709-08.2008.
4
Stem cells for spinal cord repair.
Cell Stem Cell. 2008 Jul 3;3(1):16-24. doi: 10.1016/j.stem.2008.06.011.
5
SMAD proteins control DROSHA-mediated microRNA maturation.
Nature. 2008 Jul 3;454(7200):56-61. doi: 10.1038/nature07086. Epub 2008 Jun 11.
6
BMP signaling through BMPRIA in astrocytes is essential for proper cerebral angiogenesis and formation of the blood-brain-barrier.
Mol Cell Neurosci. 2008 Jul;38(3):417-30. doi: 10.1016/j.mcn.2008.04.003. Epub 2008 Apr 20.
7
BMP type I receptor complexes have distinct activities mediating cell fate and axon guidance decisions.
Development. 2008 Mar;135(6):1119-28. doi: 10.1242/dev.012989. Epub 2008 Feb 13.
8
Small non-coding RNAs in animal development.
Nat Rev Mol Cell Biol. 2008 Mar;9(3):219-30. doi: 10.1038/nrm2347.
9
BMP inhibition enhances axonal growth and functional recovery after spinal cord injury.
J Neurochem. 2008 May;105(4):1471-9. doi: 10.1111/j.1471-4159.2008.05251.x. Epub 2008 Jan 24.
10
Inflammation and Spinal Cord Injury: Infiltrating Leukocytes as Determinants of Injury and Repair Processes.
Clin Neurosci Res. 2006 Dec;6(5):283-292. doi: 10.1016/j.cnr.2006.09.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验