Suppr超能文献

β-肾上腺素能受体的配体导向信号转导。

Ligand-directed signalling at beta-adrenoceptors.

机构信息

Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Parkville, Vic, Australia.

出版信息

Br J Pharmacol. 2010 Mar;159(5):1022-38. doi: 10.1111/j.1476-5381.2009.00602.x. Epub 2010 Feb 2.

Abstract

beta-Adrenoceptors (ARs) classically mediate responses to the endogenous ligands adrenaline and noradrenaline by coupling to Gsalpha and stimulating cAMP production; however, drugs designed as beta-AR agonists or antagonists can activate alternative cell signalling pathways, with the potential to influence clinical efficacy. Furthermore, drugs acting at beta-ARs have differential capacity for pathway activation, described as stimulus trafficking, biased agonism, functional selectivity or ligand-directed signalling. These terms refer to responses where drug A has higher efficacy than drug B for one signalling pathway, but a lower efficacy than drug B for a second pathway. The accepted explanation for such responses is that drugs A and B have the capacity to induce or stabilize distinct active conformations of the receptor that in turn display altered coupling efficiency to different effectors. This is consistent with biophysical studies showing that drugs can indeed promote distinct conformational states. Agonists acting at beta-ARs display ligand-directed signalling, but many drugs acting as cAMP antagonists are also able to activate signalling pathways central to cell survival and proliferation or cell death. The observed complexity of drug activity at beta-ARs, prototypical G protein-coupled receptors, necessitates rethinking of the approaches used for screening and characterization of novel therapeutic agents. Most studies of ligand-directed signalling employ recombinant cell systems with high receptor abundance. While such systems are valid for examining upstream signalling events, such as receptor conformational changes and G protein activation, they are less robust when comparing downstream signalling outputs as these are likely to be affected by complex pathway interactions.

摘要

β-肾上腺素能受体 (ARs) 通过与 Gsalpha 偶联并刺激 cAMP 产生,经典地介导内源性配体肾上腺素和去甲肾上腺素的反应;然而,设计为β-AR 激动剂或拮抗剂的药物可以激活替代的细胞信号通路,具有影响临床疗效的潜力。此外,作用于β-AR 的药物对途径激活具有不同的能力,被描述为刺激贩运、偏向激动、功能选择性或配体导向信号转导。这些术语是指药物 A 在一种信号通路中的效力比药物 B 高,而在第二种信号通路中的效力比药物 B 低的情况。对于这种反应的公认解释是,药物 A 和 B 具有诱导或稳定受体不同活性构象的能力,而受体不同活性构象反过来又显示出与不同效应器不同的偶联效率。这与生物物理研究一致,表明药物确实可以促进不同的构象状态。作用于β-AR 的激动剂显示配体导向信号转导,但许多作为 cAMP 拮抗剂的药物也能够激活与细胞存活和增殖或细胞死亡相关的信号通路。β-AR 上药物活性的观察到的复杂性,作为典型的 G 蛋白偶联受体,需要重新思考用于筛选和表征新型治疗剂的方法。配体导向信号转导的大多数研究都使用具有高受体丰度的重组细胞系统。虽然这些系统对于研究上游信号事件(如受体构象变化和 G 蛋白激活)是有效的,但在比较下游信号输出时,它们的稳健性较差,因为这些输出可能受到复杂的途径相互作用的影响。

相似文献

1
Ligand-directed signalling at beta-adrenoceptors.
Br J Pharmacol. 2010 Mar;159(5):1022-38. doi: 10.1111/j.1476-5381.2009.00602.x. Epub 2010 Feb 2.
2
The rush to adrenaline: drugs in sport acting on the beta-adrenergic system.
Br J Pharmacol. 2008 Jun;154(3):584-97. doi: 10.1038/bjp.2008.164.
3
Ligand-directed trafficking of receptor stimulus.
Pharmacol Rep. 2014 Dec;66(6):1011-21. doi: 10.1016/j.pharep.2014.06.006. Epub 2014 Jun 26.
4
Selective activation of beta3-adrenoceptors by octopamine: comparative studies in mammalian fat cells.
Naunyn Schmiedebergs Arch Pharmacol. 1999 Apr;359(4):310-21. doi: 10.1007/pl00005357.
5
Atypical pharmacologies at beta-adrenoceptors.
Br J Pharmacol. 2008 Oct;155(3):285-7. doi: 10.1038/bjp.2008.293. Epub 2008 Jul 21.
8
β2-Adrenoceptor signalling bias in asthma and COPD and the potential impact on the comorbidities associated with these diseases.
Curr Opin Pharmacol. 2018 Jun;40:142-146. doi: 10.1016/j.coph.2018.04.012. Epub 2018 May 12.
9
10
Analysis of functional selectivity through G protein-dependent and -independent signaling pathways at the adrenergic α(2C) receptor.
Brain Res Bull. 2014 Aug;107:89-101. doi: 10.1016/j.brainresbull.2014.07.005. Epub 2014 Jul 29.

引用本文的文献

1
Repurposing Drug Metabolites into Dual β-Adrenergic Receptor-Carbonic Anhydrase Modulators as Potential Tools for Ocular Disorders.
J Med Chem. 2025 Sep 11;68(17):18579-18596. doi: 10.1021/acs.jmedchem.5c01459. Epub 2025 Aug 26.
2
Molecular simulations reveal intricate coupling between agonist-bound β-adrenergic receptors and G protein.
iScience. 2025 Jan 2;28(2):111741. doi: 10.1016/j.isci.2024.111741. eCollection 2025 Feb 21.
3
Adrenoceptors: Receptors, Ligands and Their Clinical Uses, Molecular Pharmacology and Assays.
Handb Exp Pharmacol. 2024;285:55-145. doi: 10.1007/164_2024_713.
4
Introduction: A Short History of Adrenoceptor Research.
Handb Exp Pharmacol. 2024;285:1-12. doi: 10.1007/164_2024_718.
5
6
Role of G protein-coupled receptor kinases (GRKs) in β -adrenoceptor-mediated glucose uptake.
Pharmacol Res Perspect. 2024 Feb;12(1):e1176. doi: 10.1002/prp2.1176.
7
Norepinephrine as the Intrinsic Contributor to Contact Lens-Induced Pseudomonas aeruginosa Keratitis.
Invest Ophthalmol Vis Sci. 2023 May 1;64(5):26. doi: 10.1167/iovs.64.5.26.
8
Role of β-blockers in Preventing Heart Failure and Major Adverse Cardiac Events Post Myocardial Infarction.
Curr Cardiol Rev. 2023;19(4):e110123212591. doi: 10.2174/1573403X19666230111143901.
9
Molecular Mechanisms of Takotsubo Syndrome.
Int J Mol Sci. 2022 Oct 14;23(20):12262. doi: 10.3390/ijms232012262.
10
Role of β3-Adrenergic Receptor in Bone Marrow Transplant as Therapeutical Support in Cancer.
Front Oncol. 2022 Jun 8;12:889634. doi: 10.3389/fonc.2022.889634. eCollection 2022.

本文引用的文献

2
beta(2)-adrenoceptor antagonist ICI 118,551 decreases pulmonary vascular tone in mice via a G(i/o) protein/nitric oxide-coupled pathway.
Hypertension. 2009 Jul;54(1):157-63. doi: 10.1161/HYPERTENSIONAHA.109.130468. Epub 2009 May 26.
3
The effect of ligand efficacy on the formation and stability of a GPCR-G protein complex.
Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9501-6. doi: 10.1073/pnas.0811437106. Epub 2009 May 22.
5
NO production and eNOS phosphorylation induced by epinephrine through the activation of beta-adrenoceptors.
Am J Physiol Heart Circ Physiol. 2009 Jul;297(1):H134-43. doi: 10.1152/ajpheart.00023.2009. Epub 2009 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验