Suppr超能文献

使用仅包含骨架数据的方法进行较大蛋白质的 NMR 结构测定。

NMR structure determination for larger proteins using backbone-only data.

机构信息

Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.

出版信息

Science. 2010 Feb 19;327(5968):1014-8. doi: 10.1126/science.1183649. Epub 2010 Feb 4.

Abstract

Conventional protein structure determination from nuclear magnetic resonance data relies heavily on side-chain proton-to-proton distances. The necessary side-chain resonance assignment, however, is labor intensive and prone to error. Here we show that structures can be accurately determined without nuclear magnetic resonance (NMR) information on the side chains for proteins up to 25 kilodaltons by incorporating backbone chemical shifts, residual dipolar couplings, and amide proton distances into the Rosetta protein structure modeling methodology. These data, which are too sparse for conventional methods, serve only to guide conformational search toward the lowest-energy conformations in the folding landscape; the details of the computed models are determined by the physical chemistry implicit in the Rosetta all-atom energy function. The new method is not hindered by the deuteration required to suppress nuclear relaxation processes for proteins greater than 15 kilodaltons and should enable routine NMR structure determination for larger proteins.

摘要

传统的基于核磁共振数据的蛋白质结构测定严重依赖于侧链质子质子距离。然而,必要的侧链共振分配是劳动密集型的,容易出错。在这里,我们通过将骨架化学位移、残差偶极耦合和酰胺质子距离纳入 Rosetta 蛋白质结构建模方法,证明即使没有关于蛋白质侧链的核磁共振(NMR)信息,也可以准确地测定高达 25 千道尔顿的蛋白质结构。对于传统方法来说,这些数据过于稀疏,只能引导构象搜索朝着折叠景观中能量最低的构象进行;计算模型的细节由 Rosetta 全原子能量函数中隐含的物理化学决定。新方法不受抑制大于 15 千道尔顿的蛋白质中核弛豫过程所需的氘化的限制,应该能够为更大的蛋白质进行常规的 NMR 结构测定。

相似文献

1
NMR structure determination for larger proteins using backbone-only data.
Science. 2010 Feb 19;327(5968):1014-8. doi: 10.1126/science.1183649. Epub 2010 Feb 4.
3
Recent Advances in NMR Protein Structure Prediction with ROSETTA.
Int J Mol Sci. 2023 Apr 25;24(9):7835. doi: 10.3390/ijms24097835.
4
BCL::Fold--protein topology determination from limited NMR restraints.
Proteins. 2014 Apr;82(4):587-95. doi: 10.1002/prot.24427. Epub 2013 Oct 17.
5
Biomolecular structure refinement using the GROMOS simulation software.
J Biomol NMR. 2011 Nov;51(3):265-81. doi: 10.1007/s10858-011-9534-0. Epub 2011 Aug 20.
6
Using NMR chemical shifts as structural restraints in molecular dynamics simulations of proteins.
Structure. 2010 Aug 11;18(8):923-33. doi: 10.1016/j.str.2010.04.016.
8
Integrative Protein Modeling in RosettaNMR from Sparse Paramagnetic Restraints.
Structure. 2019 Nov 5;27(11):1721-1734.e5. doi: 10.1016/j.str.2019.08.012. Epub 2019 Sep 12.
9
Protein structure determination from pseudocontact shifts using ROSETTA.
J Mol Biol. 2012 Mar 9;416(5):668-77. doi: 10.1016/j.jmb.2011.12.056. Epub 2012 Jan 18.
10
Mapping the population of protein conformational energy sub-states from NMR dipolar couplings.
Angew Chem Int Ed Engl. 2013 Mar 11;52(11):3181-5. doi: 10.1002/anie.201209669. Epub 2013 Feb 1.

引用本文的文献

1
Quantitative Characterization of Chain-Flipping of Acyl Carrier Protein of Using Chemical Exchange NMR.
J Am Chem Soc. 2024 Jul 10;146(27):18650-18660. doi: 10.1021/jacs.4c05509. Epub 2024 Jun 14.
2
N4BP1 functions as a dimerization-dependent linear ubiquitin reader which regulates TNF signalling.
Cell Death Discov. 2024 Apr 20;10(1):183. doi: 10.1038/s41420-024-01913-8.
4
Paramagpy: software for fitting magnetic susceptibility tensors using paramagnetic effects measured in NMR spectra.
Magn Reson (Gott). 2020 Feb 14;1(1):1-12. doi: 10.5194/mr-1-1-2020. eCollection 2020.
5
Recent Advances in NMR Protein Structure Prediction with ROSETTA.
Int J Mol Sci. 2023 Apr 25;24(9):7835. doi: 10.3390/ijms24097835.
9
Concurrent Identification and Characterization of Protein Structure and Continuous Internal Dynamics with REDCRAFT.
Front Mol Biosci. 2022 Feb 4;9:806584. doi: 10.3389/fmolb.2022.806584. eCollection 2022.

本文引用的文献

2
TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts.
J Biomol NMR. 2009 Aug;44(4):213-23. doi: 10.1007/s10858-009-9333-z. Epub 2009 Jun 23.
3
PINE-SPARKY: graphical interface for evaluating automated probabilistic peak assignments in protein NMR spectroscopy.
Bioinformatics. 2009 Aug 15;25(16):2085-7. doi: 10.1093/bioinformatics/btp345. Epub 2009 Jun 3.
4
GeNMR: a web server for rapid NMR-based protein structure determination.
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W670-7. doi: 10.1093/nar/gkp280. Epub 2009 Apr 30.
5
Perspectives in paramagnetic NMR of metalloproteins.
Dalton Trans. 2008 Aug 7(29):3782-90. doi: 10.1039/b719526e. Epub 2008 Mar 27.
6
Solution structure of Alg13: the sugar donor subunit of a yeast N-acetylglucosamine transferase.
Structure. 2008 Jun;16(6):965-75. doi: 10.1016/j.str.2008.03.010.
7
Guiding conformation space search with an all-atom energy potential.
Proteins. 2008 Dec;73(4):958-72. doi: 10.1002/prot.22123.
8
High-resolution structure prediction and the crystallographic phase problem.
Nature. 2007 Nov 8;450(7167):259-64. doi: 10.1038/nature06249. Epub 2007 Oct 14.
9
Protein structure determination from NMR chemical shifts.
Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9615-20. doi: 10.1073/pnas.0610313104. Epub 2007 May 29.
10
Toward high-resolution de novo structure prediction for small proteins.
Science. 2005 Sep 16;309(5742):1868-71. doi: 10.1126/science.1113801.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验