Suppr超能文献

基于 KaiABC 的振荡器的三个主要输出途径协同作用,以在蓝藻中产生稳健的生物钟 kaiBC 表达。

Three major output pathways from the KaiABC-based oscillator cooperate to generate robust circadian kaiBC expression in cyanobacteria.

机构信息

Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.

出版信息

Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3263-8. doi: 10.1073/pnas.0909924107. Epub 2010 Jan 28.

Abstract

Circadian kaiBC expression in the cyanobacterium Synechococcus elongatus PCC 7942 is generated by temporal information transmission from the KaiABC-based circadian oscillator to RpaA, a putative transcriptional factor, via the SasA-dependent positive pathway and the LabA-dependent negative pathway which is responsible for feedback regulation of KaiC. However, the labA/sasA double mutant has a circadian kaiBC expression rhythm, suggesting that there is an additional circadian output pathway. Here we describe a third circadian output pathway, which is CikA-dependent. The cikA mutation attenuates KaiC overexpression-induced kaiBC repression and exacerbates the low-amplitude phenotype of the labA mutant, suggesting that cikA acts as a negative regulator of kaiBC expression independent of the LabA-dependent pathway. In the labA/sasA/cikA triple mutant, kaiBC promoter activity becomes almost arrhythmic, despite preservation of the circadian KaiC phosphorylation rhythm, suggesting that CikA largely accounts for the residual kaiBC expression rhythm observed in the labA/sasA double mutant. These results also strongly suggest that transcriptional regulation in the labA/sasA/cikA triple mutant is insulated from the circadian signals of the KaiABC-based oscillator. Based on these observations, we propose a model in which temporal information from the KaiABC-based circadian oscillator is transmitted to gene expression through three separate output pathways.

摘要

生物钟 KaiBC 在蓝藻 Synechococcus elongatus PCC 7942 中的表达是由基于 KaiABC 的生物钟振荡器通过 SasA 依赖的正调控途径和 LabA 依赖的负调控途径向假定的转录因子 RpaA 传递时间信息而产生的,该负调控途径负责 KaiC 的反馈调节。然而,labA/sasA 双突变体具有生物钟 KaiBC 表达节律,这表明存在额外的生物钟输出途径。在这里,我们描述了第三个生物钟输出途径,该途径依赖于 CikA。cikA 突变削弱了 KaiC 过表达诱导的 kaiBC 抑制作用,并加剧了 labA 突变体的低振幅表型,这表明 cikA 作为 kaiBC 表达的负调节剂独立于 LabA 依赖途径发挥作用。在 labA/sasA/cikA 三重突变体中,kaiBC 启动子活性几乎变得无节律,尽管 KaiC 的生物钟磷酸化节律得以保留,这表明 CikA 在很大程度上解释了在 labA/sasA 双突变体中观察到的残留 kaiBC 表达节律。这些结果还强烈表明,labA/sasA/cikA 三重突变体中的转录调控与基于 KaiABC 的生物钟振荡器的生物钟信号隔离开来。基于这些观察结果,我们提出了一个模型,其中基于 KaiABC 的生物钟振荡器的时间信息通过三个独立的输出途径传递到基因表达。

相似文献

1
Three major output pathways from the KaiABC-based oscillator cooperate to generate robust circadian kaiBC expression in cyanobacteria.
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3263-8. doi: 10.1073/pnas.0909924107. Epub 2010 Jan 28.
3
Active output state of the Synechococcus Kai circadian oscillator.
Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):E3849-57. doi: 10.1073/pnas.1315170110. Epub 2013 Sep 16.
4
Regulation of circadian clock gene expression by phosphorylation states of KaiC in cyanobacteria.
J Bacteriol. 2008 Mar;190(5):1691-8. doi: 10.1128/JB.01693-07. Epub 2007 Dec 28.
5
Role of KaiC phosphorylation in the circadian clock system of Synechococcus elongatus PCC 7942.
Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13927-32. doi: 10.1073/pnas.0403906101. Epub 2004 Sep 3.
7
The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth.
Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):E1916-25. doi: 10.1073/pnas.1504576112. Epub 2015 Mar 30.
10
Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria.
Science. 1998 Sep 4;281(5382):1519-23. doi: 10.1126/science.281.5382.1519.

引用本文的文献

1
Clock-Dependent Phosphorylation of CikA Regulates Its Activity.
J Biol Rhythms. 2025 Jun 19:7487304251338156. doi: 10.1177/07487304251338156.
3
Spatio-temporal coherence of circadian clocks and temporal control of differentiation in filaments.
mSystems. 2024 Jan 23;9(1):e0070023. doi: 10.1128/msystems.00700-23. Epub 2023 Dec 11.
4
Reconstitution of an intact clock reveals mechanisms of circadian timekeeping.
Science. 2021 Oct 8;374(6564):eabd4453. doi: 10.1126/science.abd4453.
5
Genetic Responses of Metabolically Active Strain PCC 8005 Exposed to γ-Radiation during Its Lifecycle.
Microorganisms. 2021 Jul 30;9(8):1626. doi: 10.3390/microorganisms9081626.
6
Damped circadian oscillation in the absence of KaiA in Synechococcus.
Nat Commun. 2020 May 7;11(1):2242. doi: 10.1038/s41467-020-16087-x.
7
Comparative genomics reveals the molecular determinants of rapid growth of the cyanobacterium UTEX 2973.
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11761-E11770. doi: 10.1073/pnas.1814912115. Epub 2018 Nov 8.
8
Structure, function, and mechanism of the core circadian clock in cyanobacteria.
J Biol Chem. 2018 Apr 6;293(14):5026-5034. doi: 10.1074/jbc.TM117.001433. Epub 2018 Feb 13.
9
Minimal tool set for a prokaryotic circadian clock.
BMC Evol Biol. 2017 Jul 21;17(1):169. doi: 10.1186/s12862-017-0999-7.

本文引用的文献

1
Cyanobacterial daily life with Kai-based circadian and diurnal genome-wide transcriptional control in Synechococcus elongatus.
Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14168-73. doi: 10.1073/pnas.0902587106. Epub 2009 Jul 30.
2
Dual KaiC-based oscillations constitute the circadian system of cyanobacteria.
Genes Dev. 2008 Jun 1;22(11):1513-21. doi: 10.1101/gad.1661808. Epub 2008 May 13.
3
A sequential program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria.
EMBO J. 2007 Sep 5;26(17):4029-37. doi: 10.1038/sj.emboj.7601832. Epub 2007 Aug 23.
5
Quinone sensing by the circadian input kinase of the cyanobacterial circadian clock.
Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17468-73. doi: 10.1073/pnas.0606639103. Epub 2006 Nov 6.
6
A KaiC-associating SasA-RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria.
Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12109-14. doi: 10.1073/pnas.0602955103. Epub 2006 Aug 1.
8
The pseudo-receiver domain of CikA regulates the cyanobacterial circadian input pathway.
Mol Microbiol. 2006 May;60(3):658-68. doi: 10.1111/j.1365-2958.2006.05138.x.
9
Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro.
Science. 2005 Apr 15;308(5720):414-5. doi: 10.1126/science.1108451.
10
LdpA: a component of the circadian clock senses redox state of the cell.
EMBO J. 2005 Mar 23;24(6):1202-10. doi: 10.1038/sj.emboj.7600606. Epub 2005 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验