Suppr超能文献

基因组最小化链霉菌宿主用于异源表达次级代谢产物。

Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism.

机构信息

Laboratory of Microbial Engineering, Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato Sagamihara, Kanagawa 228-8555, Japan.

出版信息

Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2646-51. doi: 10.1073/pnas.0914833107. Epub 2010 Jan 25.

Abstract

To construct a versatile model host for heterologous expression of genes encoding secondary metabolite biosynthesis, the genome of the industrial microorganism Streptomyces avermitilis was systematically deleted to remove nonessential genes. A region of more than 1.4 Mb was deleted stepwise from the 9.02-Mb S. avermitilis linear chromosome to generate a series of defined deletion mutants, corresponding to 83.12-81.46% of the wild-type chromosome, that did not produce any of the major endogenous secondary metabolites found in the parent strain. The suitability of the mutants as hosts for efficient production of foreign metabolites was shown by heterologous expression of three different exogenous biosynthetic gene clusters encoding the biosynthesis of streptomycin (from S. griseus Institute for Fermentation, Osaka [IFO] 13350), cephamycin C (from S. clavuligerus American type culture collection (ATCC) 27064), and pladienolide (from S. platensis Mer-11107). Both streptomycin and cephamycin C were efficiently produced by individual transformants at levels higher than those of the native-producing species. Although pladienolide was not produced by a deletion mutant transformed with the corresponding intact biosynthetic gene cluster, production of the macrolide was enabled by introduction of an extra copy of the regulatory gene pldR expressed under control of an alternative promoter. Another mutant optimized for terpenoid production efficiently produced the plant terpenoid intermediate, amorpha-4,11-diene, by introduction of a synthetic gene optimized for Streptomyces codon usage. These findings highlight the strength and flexibility of engineered S. avermitilis as a model host for heterologous gene expression, resulting in the production of exogenous natural and unnatural metabolites.

摘要

为了构建一个用于异源表达编码次生代谢产物生物合成基因的多功能模型宿主,系统地删除了工业微生物链霉菌avermitilis 的基因组以去除非必需基因。从 9.02-Mb 的 S. avermitilis 线性染色体中逐步删除了超过 1.4 Mb 的区域,产生了一系列定义明确的缺失突变体,对应于野生型染色体的 83.12-81.46%,这些突变体不产生亲本菌株中存在的任何主要内源性次生代谢产物。通过异源表达三个不同的外源生物合成基因簇来证明突变体作为高效生产外源代谢产物的宿主的适用性,这些基因簇编码链霉素(来自 S. griseus Institute for Fermentation,Osaka [IFO] 13350)、头孢菌素 C(来自 S. clavuligerus American type culture collection(ATCC)27064)和 pladienolide(来自 S. platensis Mer-11107)的生物合成。单个转化体中链霉素和头孢菌素 C 的产量均高于天然产生的物种。尽管相应的完整生物合成基因簇转化的缺失突变体没有产生 pladienolide,但通过引入在替代启动子控制下表达的调节基因 pldR 的额外拷贝,使大环内酯的生产成为可能。另一个经过优化用于萜类化合物生产的突变体通过引入优化用于链霉菌密码子使用的合成基因,有效地生产了植物萜烯中间产物 amorpha-4,11-diene。这些发现突出了工程化 S. avermitilis 作为异源基因表达模型宿主的优势和灵活性,导致了外源天然和非天然代谢产物的生产。

相似文献

1
Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism.
Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2646-51. doi: 10.1073/pnas.0914833107. Epub 2010 Jan 25.
3
7
pcd mutants of Streptomyces clavuligerus still produce cephamycin C.
J Bacteriol. 2007 Aug;189(16):5867-74. doi: 10.1128/JB.00712-07. Epub 2007 Jun 15.
9
Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350.
J Bacteriol. 2008 Jun;190(11):4050-60. doi: 10.1128/JB.00204-08. Epub 2008 Mar 28.
10
Heterologous expression of Streptomyces clavuligerus ATCC 27064 cephamycin C gene cluster.
J Biotechnol. 2014 Sep 30;186:21-9. doi: 10.1016/j.jbiotec.2014.06.002. Epub 2014 Jun 26.

引用本文的文献

1
dTSR enables efficient improvement of heterologous production of spinosad in .
Synth Syst Biotechnol. 2025 Apr 9;10(3):868-875. doi: 10.1016/j.synbio.2025.02.003. eCollection 2025 Sep.
2
CASCADE-Cas3 enables highly efficient genome engineering in Streptomyces species.
Nucleic Acids Res. 2025 Mar 20;53(6). doi: 10.1093/nar/gkaf214.
3
Design and regulation of engineered bacteria for environmental release.
Nat Microbiol. 2025 Feb;10(2):281-300. doi: 10.1038/s41564-024-01918-0. Epub 2025 Feb 4.
4
When synthetic biology meets medicine.
Life Med. 2024 Mar 6;3(1):lnae010. doi: 10.1093/lifemedi/lnae010. eCollection 2024 Feb.
5
Current Approaches for Genetic Manipulation of spp.-Key Bacteria for Biotechnology and Environment.
BioTech (Basel). 2025 Jan 2;14(1):3. doi: 10.3390/biotech14010003.
6
Optimizing genome editing efficiency in via a CRISPR/Cas9n-mediated editing system.
Appl Environ Microbiol. 2025 Feb 19;91(2):e0195324. doi: 10.1128/aem.01953-24. Epub 2025 Jan 22.
7
Identification of multiple regulatory genes involved in TGase production in DSM 40587.
Eng Microbiol. 2023 Jun 10;3(4):100098. doi: 10.1016/j.engmic.2023.100098. eCollection 2023 Dec.
8
Genome streamlining of B6-2 for bioremediation.
mSystems. 2024 Dec 17;9(12):e0084524. doi: 10.1128/msystems.00845-24. Epub 2024 Nov 12.
10
In vivo and in vitro Reconstitution of Biosynthesis of N-Prenylated Phenazines Revealing Diverse Phenazine-Modifying Enzymes.
Chembiochem. 2025 Jan 14;26(2):e202400723. doi: 10.1002/cbic.202400723. Epub 2024 Nov 11.

本文引用的文献

1
Genomic basis for natural product biosynthetic diversity in the actinomycetes.
Nat Prod Rep. 2009 Nov;26(11):1362-84. doi: 10.1039/b817069j. Epub 2009 Sep 1.
2
Antibiotic overproduction by rpsL and rsmG mutants of various actinomycetes.
Appl Environ Microbiol. 2009 Jul;75(14):4919-22. doi: 10.1128/AEM.00681-09. Epub 2009 May 15.
3
Characterization of a regulatory gene, aveR, for the biosynthesis of avermectin in Streptomyces avermitilis.
Appl Microbiol Biotechnol. 2009 Apr;82(6):1089-96. doi: 10.1007/s00253-008-1850-2. Epub 2009 Jan 16.
4
Engineered production of iso-migrastatin in heterologous Streptomyces hosts.
Bioorg Med Chem. 2009 Mar 15;17(6):2147-53. doi: 10.1016/j.bmc.2008.10.074. Epub 2008 Nov 5.
5
Organization of the biosynthetic gene cluster for the polyketide antitumor macrolide, pladienolide, in Streptomyces platensis Mer-11107.
Biosci Biotechnol Biochem. 2008 Nov;72(11):2946-52. doi: 10.1271/bbb.80425. Epub 2008 Nov 7.
6
Identification and functional analysis of genes controlling biosynthesis of 2-methylisoborneol.
Proc Natl Acad Sci U S A. 2008 May 27;105(21):7422-7. doi: 10.1073/pnas.0802312105. Epub 2008 May 20.
7
Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350.
J Bacteriol. 2008 Jun;190(11):4050-60. doi: 10.1128/JB.00204-08. Epub 2008 Mar 28.
8
Splicing factor SF3b as a target of the antitumor natural product pladienolide.
Nat Chem Biol. 2007 Sep;3(9):570-5. doi: 10.1038/nchembio.2007.16. Epub 2007 Jul 22.
10
Evolution of the terminal regions of the Streptomyces linear chromosome.
Mol Biol Evol. 2006 Dec;23(12):2361-9. doi: 10.1093/molbev/msl108. Epub 2006 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验