Suppr超能文献

异常的上皮-间充质 Hedgehog 信号特征表现为巴雷特食管化生。

Aberrant epithelial-mesenchymal Hedgehog signaling characterizes Barrett's metaplasia.

机构信息

Graduate Training Program in Cellular and Molecular Medicine, Johns Hopkins University, Baltimore, Maryland, USA.

出版信息

Gastroenterology. 2010 May;138(5):1810-22. doi: 10.1053/j.gastro.2010.01.048. Epub 2010 Feb 4.

Abstract

BACKGROUND & AIMS: The molecular mechanism underlying epithelial metaplasia in Barrett's esophagus remains unknown. Recognizing that Hedgehog signaling is required for early esophageal development, we sought to determine if the Hedgehog pathway is reactivated in Barrett's esophagus, and if genes downstream of the pathway could promote columnar differentiation of esophageal epithelium.

METHODS

Immunohistochemistry, immunofluorescence, and quantitative real-time polymerase chain reaction were used to analyze clinical specimens, human esophageal cell lines, and mouse esophagi. Human esophageal squamous epithelial (HET-1A) and adenocarcinoma (OE33) cells were subjected to acid treatment and used in transfection experiments. Swiss Webster mice were used in a surgical model of bile reflux injury. An in vivo transplant culture system was created using esophageal epithelium from Sonic hedgehog transgenic mice.

RESULTS

Marked up-regulation of Hedgehog ligand expression, which can be induced by acid or bile exposure, occurs frequently in Barrett's epithelium and is associated with stromal expression of the Hedgehog target genes PTCH1 and BMP4. BMP4 signaling induces expression of SOX9, an intestinal crypt transcription factor, which is highly expressed in Barrett's epithelium. We further show that expression of Deleted in Malignant Brain Tumors 1, the human homologue of the columnar cell factor Hensin, occurs in Barrett's epithelium and is induced by SOX9. Finally, transgenic expression of Sonic hedgehog in mouse esophageal epithelium induces expression of stromal Bmp4, epithelial Sox9, and columnar cytokeratins.

CONCLUSIONS

Epithelial Hedgehog ligand expression may contribute to the initiation of Barrett's esophagus through induction of stromal BMP4, which triggers reprogramming of esophageal epithelium in favor of a columnar phenotype.

摘要

背景与目的

巴雷特食管中上皮细胞化生的分子机制尚不清楚。我们认识到 Hedgehog 信号通路在食管早期发育中是必需的,因此,我们试图确定 Hedgehog 通路是否在巴雷特食管中被重新激活,以及该通路下游的基因是否可以促进食管上皮的柱状分化。

方法

采用免疫组织化学、免疫荧光和实时定量聚合酶链反应分析临床标本、人食管细胞系和小鼠食管。对人食管鳞状上皮(HET-1A)和腺癌细胞(OE33)进行酸处理,并进行转染实验。使用胆汁反流损伤的外科手术模型的瑞士 Webster 小鼠。利用 Sonic hedgehog 转基因小鼠的食管上皮,创建体内移植培养系统。

结果

Hedgehog 配体表达的显著上调经常发生在巴雷特食管中,可由酸或胆汁暴露诱导,与 Hedgehog 靶基因 PTCH1 和 BMP4 的基质表达相关。BMP4 信号诱导肠隐窝转录因子 Sox9 的表达,Sox9 在巴雷特上皮中高度表达。我们进一步表明,人类同源物 Hensin 的柱状细胞因子 Deleted in Malignant Brain Tumors 1 的表达发生在巴雷特上皮中,并由 Sox9 诱导。最后,Sonic hedgehog 在小鼠食管上皮中的转基因表达诱导基质 Bmp4、上皮 Sox9 和柱状细胞角蛋白的表达。

结论

上皮 Hedgehog 配体的表达可能通过诱导基质 BMP4 来促进巴雷特食管的发生,从而促使食管上皮向柱状表型重编程。

相似文献

1
Aberrant epithelial-mesenchymal Hedgehog signaling characterizes Barrett's metaplasia.
Gastroenterology. 2010 May;138(5):1810-22. doi: 10.1053/j.gastro.2010.01.048. Epub 2010 Feb 4.
2
Sox9 drives columnar differentiation of esophageal squamous epithelium: a possible role in the pathogenesis of Barrett's esophagus.
Am J Physiol Gastrointest Liver Physiol. 2012 Dec 15;303(12):G1335-46. doi: 10.1152/ajpgi.00291.2012. Epub 2012 Oct 11.
3
Hedgehog signaling regulates FOXA2 in esophageal embryogenesis and Barrett's metaplasia.
J Clin Invest. 2014 Sep;124(9):3767-80. doi: 10.1172/JCI66603. Epub 2014 Aug 1.
4
Notch signaling pathway and Cdx2 expression in the development of Barrett's esophagus.
Lab Invest. 2012 Jun;92(6):896-909. doi: 10.1038/labinvest.2012.56. Epub 2012 Mar 26.
5
Acidic Bile Salts Induce Epithelial to Mesenchymal Transition via VEGF Signaling in Non-Neoplastic Barrett's Cells.
Gastroenterology. 2019 Jan;156(1):130-144.e10. doi: 10.1053/j.gastro.2018.09.046. Epub 2018 Sep 27.
6
Nitric oxide could promote development of Barrett's esophagus by -nitrosylation-induced inhibition of Rho-ROCK signaling in esophageal fibroblasts.
Am J Physiol Gastrointest Liver Physiol. 2022 Jan 1;322(1):G107-G116. doi: 10.1152/ajpgi.00124.2021. Epub 2021 Nov 17.
7
Expression of Sonic hedgehog (SHH) and CDX2 in the columnar epithelium of the lower oesophagus.
Dig Liver Dis. 2011 Jan;43(1):54-9. doi: 10.1016/j.dld.2010.04.014. Epub 2010 Jul 8.
8
Barrett's metaplasia develops from cellular reprograming of esophageal squamous epithelium due to gastroesophageal reflux.
Am J Physiol Gastrointest Liver Physiol. 2017 Jun 1;312(6):G615-G622. doi: 10.1152/ajpgi.00268.2016. Epub 2017 Mar 23.
9
Reflux esophagitis and its role in the pathogenesis of Barrett's metaplasia.
J Gastroenterol. 2017 Jul;52(7):767-776. doi: 10.1007/s00535-017-1342-1. Epub 2017 Apr 27.

引用本文的文献

1
Epithelial architecture and signaling activity in the adult human esophagus.
Front Cell Dev Biol. 2025 Jul 16;13:1632255. doi: 10.3389/fcell.2025.1632255. eCollection 2025.
2
Transcriptomic Insights into Hub Genes, Immune Infiltration, and Candidate Drugs in Erosive Esophagitis.
J Inflamm Res. 2024 Oct 28;17:7745-7760. doi: 10.2147/JIR.S479032. eCollection 2024.
3
Modelling esophageal adenocarcinoma and Barrett's esophagus with patient-derived organoids.
Front Mol Biosci. 2024 Apr 24;11:1382070. doi: 10.3389/fmolb.2024.1382070. eCollection 2024.
4
Impact of TRP Channels on Extracellular Matrix Remodeling: Focus on TRPV4 and Collagen.
Int J Mol Sci. 2024 Mar 22;25(7):3566. doi: 10.3390/ijms25073566.
5
Ligand-dependent hedgehog signaling maintains an undifferentiated, malignant osteosarcoma phenotype.
Oncogene. 2023 Nov;42(47):3529-3541. doi: 10.1038/s41388-023-02864-7. Epub 2023 Oct 16.
7
Signaling Pathways in the Pathogenesis of Barrett's Esophagus and Esophageal Adenocarcinoma.
Int J Mol Sci. 2023 May 26;24(11):9304. doi: 10.3390/ijms24119304.
8
Cancer Risk in Barrett's Esophagus: A Clinical Review.
Int J Mol Sci. 2023 Mar 23;24(7):6018. doi: 10.3390/ijms24076018.
9
The role of bile acid in intestinal metaplasia.
Front Physiol. 2023 Feb 20;14:1115250. doi: 10.3389/fphys.2023.1115250. eCollection 2023.
10
Hybrid argon plasma coagulation in Barrett's esophagus: a systematic review and meta-analysis.
Clin Endosc. 2023 Jan;56(1):38-49. doi: 10.5946/ce.2022.179. Epub 2023 Jan 30.

本文引用的文献

1
Reconstitution of stratified murine and human oesophageal epithelia in an in vivo transplant culture system.
Scand J Gastroenterol. 2008;43(10):1158-68. doi: 10.1080/00365520802102489.
3
SOX9 is required for the differentiation of paneth cells in the intestinal epithelium.
Gastroenterology. 2007 Aug;133(2):539-46. doi: 10.1053/j.gastro.2007.05.020. Epub 2007 May 21.
4
Bone morphogenetic protein signaling is essential for terminal differentiation of the intestinal secretory cell lineage.
Gastroenterology. 2007 Sep;133(3):887-96. doi: 10.1053/j.gastro.2007.06.066. Epub 2007 Jul 3.
5
Bone morphogenetic protein 4 expressed in esophagitis induces a columnar phenotype in esophageal squamous cells.
Gastroenterology. 2007 Jun;132(7):2412-21. doi: 10.1053/j.gastro.2007.03.026. Epub 2007 Mar 19.
6
A Col9a1 enhancer element activated by two interdependent SOX9 dimers.
Nucleic Acids Res. 2007;35(4):1178-86. doi: 10.1093/nar/gkm014. Epub 2007 Jan 30.
7
Morphogenesis of the trachea and esophagus: current players and new roles for noggin and Bmps.
Differentiation. 2006 Sep;74(7):422-37. doi: 10.1111/j.1432-0436.2006.00096.x.
9
Adenocarcinoma of the esophagus and cardia: a review of the disease and its treatment.
Ann Surg Oncol. 2006 Jan;13(1):12-30. doi: 10.1245/ASO.2005.12.025. Epub 2006 Jan 1.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验