Suppr超能文献

体内神经胶质细胞的长期突触可塑性。

In vivo long-term synaptic plasticity of glial cells.

机构信息

Département de physiologie, Faculté de médecine, Université de Montréal, PO box 6128 Succursale Centre-ville, Montréal, Québec, Canada.

出版信息

J Physiol. 2010 Apr 1;588(Pt 7):1039-56. doi: 10.1113/jphysiol.2009.178988. Epub 2010 Feb 8.

Abstract

Evidence showing the ability of glial cells to detect, respond to and modulate synaptic transmission and plasticity has contributed to the notion of glial cells as active synaptic partners. However, synaptically induced plasticity of glia themselves remains ill defined. Here we used the amphibian neuromuscular junction (NMJ) to study plasticity of perisynaptic Schwann cells (PSCs), glial cells at this synapse, following long-term in vivo modifications of synaptic activity. We used two models that altered synaptic activity in different manners. First, chronic blockade of postsynaptic nicotinic receptors using alpha-bungarotoxin (alpha-BTx) decreased facilitation, increased synaptic depression and decreased post-tetanic potentiation (PTP). Second, chronic nerve stimulation increased facilitation and resistance to synaptic depression, while leaving PTP unaltered. Our results indicate that there is no direct relationship between transmitter release and PSC calcium responses. Indeed, despite changes in transmitter release and plasticity in stimulated NMJs, nerve-evoked PSC calcium responses were similar to control. Similarly, PSC calcium responses in alpha-BTx treated NMJs were delayed and smaller in amplitude, even though basal level of transmitter release was increased. Also, when isolating purinergic and muscarinic components of PSC calcium responses, we found an increased sensitivity to ATP and a decreased sensitivity to muscarine in chronically stimulated NMJs. Conversely, in alpha-BTx treated NMJs, PSC sensitivity remained unaffected, but ATP- and muscarine-induced calcium responses were prolonged. Thus, our results reveal complex modifications of PSC properties, with differential modulation of signalling pathways that might underlie receptor regulation or changes in Ca(2+) handling. Importantly, similar to neurons, perisynaptic glial cells undergo plastic changes induced by altered synaptic activity.

摘要

证据表明神经胶质细胞能够检测、响应和调节突触传递和可塑性,这促使人们认为神经胶质细胞是活跃的突触伙伴。然而,胶质细胞自身的突触诱导可塑性仍然定义不明确。在这里,我们使用两栖动物的神经肌肉接点(NMJ)来研究突触旁施万细胞(PSCs)的可塑性,PSCs 是这个突触中的神经胶质细胞,这些细胞的可塑性是在体内长期改变突触活动的情况下产生的。我们使用了两种模型,它们以不同的方式改变了突触活动。首先,使用α-银环蛇毒素(alpha-BTx)慢性阻断突触后烟碱受体,降低了易化作用,增加了突触抑制,减少了强直后增强(PTP)。其次,慢性神经刺激增加了易化作用和对突触抑制的抵抗力,而 PTP 没有改变。我们的结果表明,递质释放和 PSC 钙反应之间没有直接关系。事实上,尽管在受刺激的 NMJ 中递质释放和可塑性发生了变化,但神经诱发的 PSC 钙反应与对照相似。同样,在 alpha-BTx 处理的 NMJ 中,PSC 钙反应延迟且幅度较小,尽管基础递质释放增加。此外,当分离 PSC 钙反应的嘌呤能和毒蕈碱能成分时,我们发现慢性刺激 NMJ 中对 ATP 的敏感性增加,对毒蕈碱的敏感性降低。相反,在 alpha-BTx 处理的 NMJ 中,PSC 敏感性保持不变,但 ATP 和毒蕈碱诱导的钙反应延长。因此,我们的结果揭示了 PSC 特性的复杂变化,其中信号通路的调节存在差异,这可能是受体调节或 Ca(2+)处理变化的基础。重要的是,与神经元类似,突触旁神经胶质细胞也会发生由改变的突触活动引起的可塑性变化。

相似文献

1
In vivo long-term synaptic plasticity of glial cells.
J Physiol. 2010 Apr 1;588(Pt 7):1039-56. doi: 10.1113/jphysiol.2009.178988. Epub 2010 Feb 8.
2
Synapse-glia interactions are governed by synaptic and intrinsic glial properties.
Neuroscience. 2010 May 19;167(3):621-32. doi: 10.1016/j.neuroscience.2010.02.036. Epub 2010 Feb 24.
3
Properties of Glial Cell at the Neuromuscular Junction Are Incompatible with Synaptic Repair in the ALS Mouse Model.
J Neurosci. 2020 Sep 30;40(40):7759-7777. doi: 10.1523/JNEUROSCI.1748-18.2020. Epub 2020 Aug 28.
5
Long-term in vivo modulation of synaptic efficacy at the neuromuscular junction of Rana pipiens frogs.
J Physiol. 2005 Nov 15;569(Pt 1):163-78. doi: 10.1113/jphysiol.2005.094805. Epub 2005 Sep 15.
7
Endogenous peptidergic modulation of perisynaptic Schwann cells at the frog neuromuscular junction.
J Physiol. 1998 Oct 1;512 ( Pt 1)(Pt 1):197-209. doi: 10.1111/j.1469-7793.1998.197bf.x.
8
Synapse-glia interactions at the mammalian neuromuscular junction.
J Neurosci. 2001 Jun 1;21(11):3819-29. doi: 10.1523/JNEUROSCI.21-11-03819.2001.
9
Glial modulation of synaptic transmission at the neuromuscular junction.
Glia. 2004 Aug 15;47(3):284-289. doi: 10.1002/glia.20086.

引用本文的文献

1
Muscarinic Cholinoreceptors in Skeletal Muscle: Localization and Functional Role.
Acta Naturae. 2023 Oct-Dec;15(4):44-55. doi: 10.32607/actanaturae.25259.
2
TDP-43 dysregulation and neuromuscular junction disruption in amyotrophic lateral sclerosis.
Transl Neurodegener. 2022 Dec 27;11(1):56. doi: 10.1186/s40035-022-00331-z.
3
Functional adaptation of glial cells at neuromuscular junctions in response to injury.
Glia. 2022 Sep;70(9):1605-1629. doi: 10.1002/glia.24184. Epub 2022 Apr 27.
5
Terminal Schwann Cell Aging: Implications for Age-Associated Neuromuscular Dysfunction.
Aging Dis. 2021 Apr 1;12(2):494-514. doi: 10.14336/AD.2020.0708. eCollection 2021 Apr.
6
Properties of Glial Cell at the Neuromuscular Junction Are Incompatible with Synaptic Repair in the ALS Mouse Model.
J Neurosci. 2020 Sep 30;40(40):7759-7777. doi: 10.1523/JNEUROSCI.1748-18.2020. Epub 2020 Aug 28.
7
Clinical relevance of terminal Schwann cells: An overlooked component of the neuromuscular junction.
J Neurosci Res. 2018 Jul;96(7):1125-1135. doi: 10.1002/jnr.24231. Epub 2018 Mar 13.
8
New perspectives on amyotrophic lateral sclerosis: the role of glial cells at the neuromuscular junction.
J Physiol. 2017 Feb 1;595(3):647-661. doi: 10.1113/JP270213. Epub 2016 Dec 1.
9
Perisynaptic Schwann Cells at the Neuromuscular Synapse: Adaptable, Multitasking Glial Cells.
Cold Spring Harb Perspect Biol. 2015 Aug 20;7(10):a020503. doi: 10.1101/cshperspect.a020503.
10
Plasticity of Neuron-Glial Transmission: Equipping Glia for Long-Term Integration of Network Activity.
Neural Plast. 2015;2015:765792. doi: 10.1155/2015/765792. Epub 2015 Aug 3.

本文引用的文献

1
Heterogeneity in synaptic vesicle release at neuromuscular synapses of mice expressing synaptopHluorin.
J Neurosci. 2008 Jan 2;28(1):325-35. doi: 10.1523/JNEUROSCI.3544-07.2008.
2
Activation of P2X(7) receptors stimulates the expression of P2Y(2) receptor mRNA in astrocytes cultured from rat brain.
Int J Immunopathol Pharmacol. 2007 Apr-Jun;20(2):301-16. doi: 10.1177/039463200702000210.
3
Neurotrophins modulate neuron-glia interactions at a vertebrate synapse.
Eur J Neurosci. 2007 Mar;25(5):1287-96. doi: 10.1111/j.1460-9568.2007.05385.x. Epub 2007 Mar 9.
4
The tripartite synapse: roles for gliotransmission in health and disease.
Trends Mol Med. 2007 Feb;13(2):54-63. doi: 10.1016/j.molmed.2006.12.005. Epub 2007 Jan 4.
5
Long-term in vivo modulation of synaptic efficacy at the neuromuscular junction of Rana pipiens frogs.
J Physiol. 2005 Nov 15;569(Pt 1):163-78. doi: 10.1113/jphysiol.2005.094805. Epub 2005 Sep 15.
6
Regulation of neuromuscular transmission by neurotrophins.
Sheng Li Xue Bao. 2003 Dec 25;55(6):617-24.
7
Activity-dependent plasticity of transmitter release from nerve terminals in rat fast and slow muscles.
J Neurosci. 2003 Oct 15;23(28):9340-8. doi: 10.1523/JNEUROSCI.23-28-09340.2003.
8
Glial cells and neurotransmission: an inclusive view of synaptic function.
Neuron. 2003 Oct 9;40(2):389-400. doi: 10.1016/s0896-6273(03)00607-x.
9
Regulation of muscarinic acetylcholine receptor signaling.
Pharmacol Ther. 2003 May;98(2):197-220. doi: 10.1016/s0163-7258(03)00032-9.
10
Short-term synaptic plasticity.
Annu Rev Physiol. 2002;64:355-405. doi: 10.1146/annurev.physiol.64.092501.114547.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验