Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont 05405-0068, USA.
J Toxicol Environ Health A. 2010;73(5):423-36. doi: 10.1080/15287390903486568.
Identifying and understanding the early molecular events that underscore mineral pathogenicity using in vitro screening tests is imperative, especially given the large number of synthetic and natural fibers and particles being introduced into the environment. The purpose of the work described here was to examine the ability of gene profiling (Affymetrix microarrays) to predict the pathogenicity of various materials in a human mesothelial cell line (LP9/TERT-1) exposed to equal surface area concentrations (15 x 10(6) or 75 x 10(6) microm(2)/cm(2)) of crocidolite asbestos, nonfibrous talc, fine titanium dioxide (TiO(2)), or glass beads for 8 or 24 h. Since crocidolite asbestos caused the greatest number of alterations in gene expression, multiplex analysis (Bio-Plex) of proteins released from LP9/TERT-1 cells exposed to crocidolite asbestos was also assessed to reveal if this approach might also be explored in future assays comparing various mineral types. To verify that LP9/TERT-1 cells were more sensitive than other cell types to asbestos, human ovarian epithelial cells (IOSE) were also utilized in microarray studies. Upon assessing changes in gene expression via microarrays, principal component analysis (PCA) of these data was used to identify patterns of differential gene expression. PCA of microarray data confirmed that LP9/TERT-1 cells were more responsive than IOSE cells to crocidolite asbestos or nonfibrous talc, and that crocidolite asbestos elicited greater responses in both cell types when compared to nonfibrous talc, TiO(2), or glass beads. Bio-Plex analysis demonstrated that asbestos caused an increase in interleukin-13 (IL-13), basic fibroblast growth factor (bFGF), granulocyte colony-stimulating factor (G-CSF), and vascular endothelial growth factor (VEGF). These responses were generally dose-dependent (bFGF and G-CSF only) and tumor necrosis factor (TNF)-alpha independent (except for G-CSF). Thus, microarray and Bio-Plex analyses are valuable in determining early molecular responses to fibers/particles and may directly contribute to understanding the etiology of diseases caused by them. The number and magnitude of changes in gene expression or "profiles" of secreted proteins may serve as valuable metrics for determining the potential pathogenicity of various mineral types. Hence, alterations in gene expression and cytokine/chemokine changes induced by crocidolite asbestos in LP9/TERT-1 cells may be indicative of its increased potential to cause mesothelioma in comparison to the other nonfibrous materials examined.
使用体外筛选试验来识别和了解强调矿物致病性的早期分子事件至关重要,尤其是考虑到大量合成和天然纤维和颗粒被引入环境中。这里描述的工作目的是检查基因谱(Affymetrix 微阵列)在人类间皮细胞系(LP9/TERT-1)中预测各种材料的致病性的能力,这些材料暴露于相等的表面积浓度(15×10(6)或 75×10(6)μm(2)/cm(2))青石棉、非纤维滑石、细二氧化钛(TiO(2))或玻璃珠 8 或 24 小时。由于青石棉引起的基因表达变化最多,因此还评估了从暴露于青石棉的 LP9/TERT-1 细胞释放的蛋白质的多重分析(Bio-Plex),以揭示这种方法是否也可以在未来比较各种矿物类型的试验中进行探索。为了验证 LP9/TERT-1 细胞比其他细胞类型对石棉更敏感,还利用人卵巢上皮细胞(IOSE)进行了微阵列研究。通过微阵列评估基因表达的变化,使用主成分分析(PCA)对这些数据进行分析,以识别差异基因表达的模式。微阵列数据的 PCA 证实,LP9/TERT-1 细胞对青石棉或非纤维滑石的反应比 IOSE 细胞更敏感,并且与非纤维滑石、TiO(2)或玻璃珠相比,青石棉在两种细胞类型中引起更大的反应。Bio-Plex 分析表明,石棉引起白细胞介素 13(IL-13)、碱性成纤维细胞生长因子(bFGF)、粒细胞集落刺激因子(G-CSF)和血管内皮生长因子(VEGF)的增加。这些反应通常是剂量依赖性的(仅 bFGF 和 G-CSF)和肿瘤坏死因子(TNF)-α 独立的(除 G-CSF 外)。因此,微阵列和 Bio-Plex 分析在确定对纤维/颗粒的早期分子反应方面非常有用,并可能直接有助于理解由它们引起的疾病的病因。基因表达或“谱”的分泌蛋白的数量和幅度的变化可能是确定各种矿物类型潜在致病性的有价值的指标。因此,LP9/TERT-1 细胞中青石棉诱导的基因表达和细胞因子/趋化因子变化的改变可能表明其与所检查的其他非纤维材料相比,增加了引起间皮瘤的潜力。