Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
J Am Chem Soc. 2010 Mar 10;132(9):3196-203. doi: 10.1021/ja910331t.
Current NMR information on side-chain conformations of unfolded protein states is sparse due to the poor dispersion particularly of side-chain proton resonances. We present here optimized schemes for the detection of (3)J(HalphaHbeta), (3)J(NHbeta), and (3)J(C'Hbeta) scalar and (1)D(CbetaHbeta) residual dipolar couplings (RDCs) in unfolded proteins. For urea-denatured ubiquitin and protein G, up to six (3)J-couplings to (1)H(beta) are detected, which define the chi(1) angle at very high precision. Interpretation of the (3)J couplings by a model of mixed staggered chi(1) rotamers yields excellent agreement and also provides stereoassignments for (1)H(beta) methylene protons. For all observed amino acids with the exception of leucine, the chemical shift of (1)H(beta3) protons was found downfield from (1)H(beta2). For most residues, the precision of individual chi(1) rotamer populations is better than 2%. The experimental chi(1) rotamer populations are in the vicinity of averages obtained from coil regions in folded protein structures. However, individual variations from these averages of up to 40% are highly significant and indicate sequence- and residue-specific interactions. Particularly strong deviations from the coil average are found for serine and threonine residues, an effect that may be explained by a weakening of side-chain to backbone hydrogen bonds in the urea-denatured state. The measured (1)D(CbetaHbeta) RDCs correlate well with predicted RDCs that were calculated from a sterically aligned coil model ensemble and the (3)J-derived chi(1) rotamer populations. This agreement supports the coil model as a good first approximation of the unfolded state. Deviations between measured and predicted values at certain sequence locations indicate that the description of the local backbone conformations can be improved by incorporation of the RDC information. The ease of detection of a large number of highly precise side-chain RDCs opens the possibility for a more rigorous characterization of both side-chain and backbone conformations in unfolded proteins.
由于侧链质子共振的弥散较差,目前关于无规卷曲状态下侧链构象的 NMR 信息较为匮乏。本文介绍了优化方案,用于检测去折叠蛋白中(3)J(HalphaHbeta)、(3)J(NHbeta)和(3)J(C'Hbeta)的标量偶合以及(1)D(CbetaHbeta)残剩偶极偶合(RDC)。对于脲变性泛素和蛋白 G,我们检测到了多达六个到(1)H(beta)的(3)J 偶合,这非常精确地定义了 chi(1)角。通过混合交错 chi(1)构象体模型对(3)J 偶合的解释,得到了极好的一致性,并且还为(1)H(beta)亚甲基质子提供了立体化学归属。对于除亮氨酸之外的所有观察到的氨基酸,(1)H(beta3)质子的化学位移都出现在(1)H(beta2)的场强方向。对于大多数残基,单个 chi(1)构象体群体的精度优于 2%。实验得到的 chi(1)构象体群体接近来自折叠蛋白结构无规卷曲区域的平均值。然而,与这些平均值相比,高达 40%的个体差异非常显著,表明存在序列和残基特异性相互作用。丝氨酸和苏氨酸残基的偏离幅度尤其大,这一效应可能是由于在脲变性状态下,侧链与骨架氢键变弱所致。所测量的(1)D(CbetaHbeta)RDC 与预测的 RDC 高度相关,预测的 RDC 是根据一个刚性排列的无规卷曲模型集和(3)J 衍生的 chi(1)构象体群体计算得到的。这种一致性支持了无规卷曲模型作为无规卷曲状态的良好初始近似。在某些序列位置,测量值与预测值之间的偏差表明,通过结合 RDC 信息,可以改进局部骨架构象的描述。大量高度精确的侧链 RDC 的检测为无规卷曲蛋白中侧链和骨架构象的更严格特征化提供了可能性。