Center for Intergrated Protein Science and Institute of Neuroscience, Technical University Munich, Biedersteinerstr. 29, 80802 München, Germany.
J Physiol. 2010 Apr 1;588(Pt 7):1085-96. doi: 10.1113/jphysiol.2009.184960. Epub 2010 Feb 15.
Axonally initiated action potentials back-propagate into spiny dendrites of central mammalian neurons and thereby regulate plasticity at excitatory synapses on individual spines as well as linear and supralinear integration of synaptic inputs along dendritic branches. Thus, the electrical behaviour of individual dendritic spines and terminal dendritic branches is critical for the integrative function of nerve cells. The actual dynamics of action potentials in spines and terminal branches, however, are not entirely clear, mostly because electrode recording from such small structures is not feasible. Additionally, the available membrane potential imaging techniques are limited in their sensitivity and require substantial signal averaging for the detection of electrical events at the spatial scale of individual spines. We made a critical improvement in the voltage-sensitive dye imaging technique to achieve multisite recordings of backpropagating action potentials from individual dendritic spines at a high frame rate. With this approach, we obtained direct evidence that in layer 5 pyramidal neurons from the visual cortex of juvenile mice, the rapid time course of somatic action potentials is preserved throughout all cellular compartments, including dendritic spines and terminal branches of basal and apical dendrites. The rapid time course of the action potential in spines may be a critical determinant for the precise regulation of spike timing-dependent synaptic plasticity within a narrow time window.
轴突起始的动作电位逆行传入哺乳动物中枢神经元的棘突状树突,从而调节棘突上单个兴奋性突触的可塑性,以及沿着树突分支的线性和超线性整合突触输入。因此,单个树突棘和末端树突分支的电活动对于神经细胞的整合功能至关重要。然而,棘突和末端树突分支中动作电位的实际动力学尚不完全清楚,主要是因为从如此小的结构进行电极记录是不可行的。此外,现有的膜电位成像技术在灵敏度方面存在局限性,并且需要进行大量信号平均,以在单个树突棘的空间尺度上检测电事件。我们对电压敏感染料成像技术进行了重要改进,以实现从幼年小鼠视觉皮层的第 5 层锥体神经元的单个树突棘的逆行动作电位的高速多点记录。通过这种方法,我们获得了直接证据表明,在幼年小鼠视觉皮层的第 5 层锥体神经元中,包括树突棘和基底及顶树突的末端分支在内的所有细胞区室中,体部动作电位的快速时程都得以保持。棘突中动作电位的快速时程可能是在狭窄的时间窗口内精确调节依赖于尖峰时间的突触可塑性的关键决定因素。