Suppr超能文献

快速动作电位在小鼠视觉皮层神经元的棘突和远程树突中的时间进程。

Rapid time course of action potentials in spines and remote dendrites of mouse visual cortex neurons.

机构信息

Center for Intergrated Protein Science and Institute of Neuroscience, Technical University Munich, Biedersteinerstr. 29, 80802 München, Germany.

出版信息

J Physiol. 2010 Apr 1;588(Pt 7):1085-96. doi: 10.1113/jphysiol.2009.184960. Epub 2010 Feb 15.

Abstract

Axonally initiated action potentials back-propagate into spiny dendrites of central mammalian neurons and thereby regulate plasticity at excitatory synapses on individual spines as well as linear and supralinear integration of synaptic inputs along dendritic branches. Thus, the electrical behaviour of individual dendritic spines and terminal dendritic branches is critical for the integrative function of nerve cells. The actual dynamics of action potentials in spines and terminal branches, however, are not entirely clear, mostly because electrode recording from such small structures is not feasible. Additionally, the available membrane potential imaging techniques are limited in their sensitivity and require substantial signal averaging for the detection of electrical events at the spatial scale of individual spines. We made a critical improvement in the voltage-sensitive dye imaging technique to achieve multisite recordings of backpropagating action potentials from individual dendritic spines at a high frame rate. With this approach, we obtained direct evidence that in layer 5 pyramidal neurons from the visual cortex of juvenile mice, the rapid time course of somatic action potentials is preserved throughout all cellular compartments, including dendritic spines and terminal branches of basal and apical dendrites. The rapid time course of the action potential in spines may be a critical determinant for the precise regulation of spike timing-dependent synaptic plasticity within a narrow time window.

摘要

轴突起始的动作电位逆行传入哺乳动物中枢神经元的棘突状树突,从而调节棘突上单个兴奋性突触的可塑性,以及沿着树突分支的线性和超线性整合突触输入。因此,单个树突棘和末端树突分支的电活动对于神经细胞的整合功能至关重要。然而,棘突和末端树突分支中动作电位的实际动力学尚不完全清楚,主要是因为从如此小的结构进行电极记录是不可行的。此外,现有的膜电位成像技术在灵敏度方面存在局限性,并且需要进行大量信号平均,以在单个树突棘的空间尺度上检测电事件。我们对电压敏感染料成像技术进行了重要改进,以实现从幼年小鼠视觉皮层的第 5 层锥体神经元的单个树突棘的逆行动作电位的高速多点记录。通过这种方法,我们获得了直接证据表明,在幼年小鼠视觉皮层的第 5 层锥体神经元中,包括树突棘和基底及顶树突的末端分支在内的所有细胞区室中,体部动作电位的快速时程都得以保持。棘突中动作电位的快速时程可能是在狭窄的时间窗口内精确调节依赖于尖峰时间的突触可塑性的关键决定因素。

相似文献

1
Rapid time course of action potentials in spines and remote dendrites of mouse visual cortex neurons.
J Physiol. 2010 Apr 1;588(Pt 7):1085-96. doi: 10.1113/jphysiol.2009.184960. Epub 2010 Feb 15.
2
Membrane potential changes in dendritic spines during action potentials and synaptic input.
J Neurosci. 2009 May 27;29(21):6897-903. doi: 10.1523/JNEUROSCI.5847-08.2009.
3
Dendritic spines linearize the summation of excitatory potentials.
Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18799-804. doi: 10.1073/pnas.0609225103. Epub 2006 Nov 28.
5
Voltage compartmentalization in dendritic spines in vivo.
Science. 2022 Jan 7;375(6576):82-86. doi: 10.1126/science.abg0501. Epub 2021 Nov 11.
7
Electrical advantages of dendritic spines.
PLoS One. 2012;7(4):e36007. doi: 10.1371/journal.pone.0036007. Epub 2012 Apr 20.
8
Action potential initiation and propagation in rat neocortical pyramidal neurons.
J Physiol. 1997 Dec 15;505 ( Pt 3)(Pt 3):617-32. doi: 10.1111/j.1469-7793.1997.617ba.x.
9
EPSPs Measured in Proximal Dendritic Spines of Cortical Pyramidal Neurons.
eNeuro. 2016 May 12;3(2). doi: 10.1523/ENEURO.0050-15.2016. eCollection 2016 Mar-Apr.
10
Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study.
Nat Neurosci. 2007 Feb;10(2):206-14. doi: 10.1038/nn1826. Epub 2007 Jan 7.

引用本文的文献

1
Contribution of individual excitatory synapses on dendritic spines to electrical signaling.
Front Neurosci. 2025 Jul 29;19:1620654. doi: 10.3389/fnins.2025.1620654. eCollection 2025.
2
Dendritic excitations govern back-propagation via a spike-rate accelerometer.
Nat Commun. 2025 Feb 4;16(1):1333. doi: 10.1038/s41467-025-55819-9.
3
Neuronal Imaging at 8-Bit Depth to Combine High Spatial and High Temporal Resolution With Acquisition Rates Up To 40 kHz.
J Biophotonics. 2025 Mar;18(3):e202400513. doi: 10.1002/jbio.202400513. Epub 2025 Jan 10.
5
Electrical properties of dendritic spines.
Biophys J. 2023 Nov 21;122(22):4303-4315. doi: 10.1016/j.bpj.2023.10.008. Epub 2023 Oct 13.
6
Spatio-temporal parameters for optical probing of neuronal activity.
Biophys Rev. 2021 Feb 23;13(1):13-33. doi: 10.1007/s12551-021-00780-2. eCollection 2021 Feb.
7
Subcellular resolution three-dimensional light-field imaging with genetically encoded voltage indicators.
Neurophotonics. 2020 Jul;7(3):035006. doi: 10.1117/1.NPh.7.3.035006. Epub 2020 Aug 28.
9
A calcium-influx-dependent plasticity model exhibiting multiple STDP curves.
J Comput Neurosci. 2020 Feb;48(1):65-84. doi: 10.1007/s10827-019-00737-1. Epub 2020 Jan 24.
10
Probabilistic associative learning suffices for learning the temporal structure of multiple sequences.
PLoS One. 2019 Aug 1;14(8):e0220161. doi: 10.1371/journal.pone.0220161. eCollection 2019.

本文引用的文献

1
Membrane potential changes in dendritic spines during action potentials and synaptic input.
J Neurosci. 2009 May 27;29(21):6897-903. doi: 10.1523/JNEUROSCI.5847-08.2009.
2
Activity-dependent control of neuronal output by local and global dendritic spike attenuation.
Neuron. 2009 Mar 26;61(6):906-16. doi: 10.1016/j.neuron.2009.01.032.
3
Reporting ethical matters in the Journal of Physiology: standards and advice.
J Physiol. 2009 Feb 15;587(Pt 4):713-9. doi: 10.1113/jphysiol.2008.167387.
4
Dynamics of action potential backpropagation in basal dendrites of prefrontal cortical pyramidal neurons.
Eur J Neurosci. 2008 Feb;27(4):923-36. doi: 10.1111/j.1460-9568.2008.06075.x. Epub 2008 Feb 13.
5
Spike timing-dependent plasticity: a Hebbian learning rule.
Annu Rev Neurosci. 2008;31:25-46. doi: 10.1146/annurev.neuro.31.060407.125639.
7
Intracellular long-wavelength voltage-sensitive dyes for studying the dynamics of action potentials in axons and thin dendrites.
J Neurosci Methods. 2007 Aug 30;164(2):225-39. doi: 10.1016/j.jneumeth.2007.05.002. Epub 2007 May 6.
8
Patch-clamp recording from mossy fiber terminals in hippocampal slices.
Nat Protoc. 2006;1(4):2075-81. doi: 10.1038/nprot.2006.312.
10
Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study.
Nat Neurosci. 2007 Feb;10(2):206-14. doi: 10.1038/nn1826. Epub 2007 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验