Suppr超能文献

用于无环多元醇、无环碳水化合物和肌醇的CHARMM加性全原子力场

CHARMM Additive All-Atom Force Field for Acyclic Polyalcohols, Acyclic Carbohydrates and Inositol.

作者信息

Hatcher Elizabeth, Guvench Olgun, Mackerell Alexander D

机构信息

Department of Pharmaceutical Sciences, 20 Penn Street HSF II, University of Maryland, Baltimore, Maryland 21201.

出版信息

J Chem Theory Comput. 2009 Apr 27;5(5):1315-1327. doi: 10.1021/ct9000608.

Abstract

Parametrization of the additive all-atom CHARMM force field for acyclic polyalcohols, acyclic carbohydrates and inositol is conducted. Initial parameters were transferred from the alkanes and hexopyranose carbohydrates, with subsequent development and optimization of parameters unique to the molecules considered in this study. Using the model compounds acetone and acetaldehyde, nonbonded parameters for carbonyls were optimized targeting quantum mechanical interaction data for solute-water pairs and pure solvent thermodynamic data. Bond and angle parameters were adjusted by comparing optimized geometries to small molecule crystal survey data and by performing vibrational analyses on acetone, acetaldehyde and glycerol. C-C-C-C, C-C-C-O, C-C-OH and O-C-C-O torsional parameters for polyol chains were fit to quantum mechanical dihedral potential energy scans comprising over 1500 RIMP2/cc-pVTZ//MP2/6-31G(d) conformations using an automated Monte Carlo simulated annealing procedure. Comparison of computed condensed-phase data, including crystal lattice parameters and densities, NMR proton-proton couplings, densities and diffusion coefficients of aqueous solutions, to experimental data validated the optimized parameters. Parameter development for these compounds proved particularly challenging because of the flexibility of the acyclic sugars and polyalcohols as well as the intramolecular hydrogen bonding between vicinal hydroxyls for all of the compounds. The newly optimized additive CHARMM force field parameters are anticipated to be of utility for atomic level of detail simulations of acyclic polyalcohols, acyclic carbohydrates and inositol in solution.

摘要

对无环多元醇、无环碳水化合物和肌醇的全原子CHARMM加和力场进行了参数化。初始参数从烷烃和己吡喃糖碳水化合物转移而来,随后针对本研究中所考虑分子的独特参数进行了开发和优化。使用模型化合物丙酮和乙醛,针对溶质 - 水对的量子力学相互作用数据和纯溶剂热力学数据优化了羰基的非键参数。通过将优化后的几何结构与小分子晶体测量数据进行比较,并对丙酮、乙醛和甘油进行振动分析,调整了键和角度参数。使用自动蒙特卡罗模拟退火程序,将多元醇链的C - C - C - C、C - C - C - O、C - C - OH和O - C - C - O扭转参数拟合到包含超过1500个RIMP2/cc - pVTZ//MP2/6 - 31G(d)构象的量子力学二面角势能扫描中。将计算得到的凝聚相数据,包括晶格参数和密度、核磁共振质子 - 质子耦合、水溶液的密度和扩散系数,与实验数据进行比较,验证了优化后的参数。由于无环糖和多元醇的灵活性以及所有化合物中邻位羟基之间的分子内氢键作用,这些化合物的参数开发被证明特别具有挑战性。新优化的加和CHARMM力场参数预计可用于对溶液中的无环多元醇、无环碳水化合物和肌醇进行原子级详细模拟。

相似文献

1
CHARMM Additive All-Atom Force Field for Acyclic Polyalcohols, Acyclic Carbohydrates and Inositol.
J Chem Theory Comput. 2009 Apr 27;5(5):1315-1327. doi: 10.1021/ct9000608.
2
CHARMM Additive All-Atom Force Field for Glycosidic Linkages between Hexopyranoses.
J Chem Theory Comput. 2009 Aug 20;5(9):2353-2370. doi: 10.1021/ct900242e.
3
CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses.
J Phys Chem B. 2010 Oct 14;114(40):12981-94. doi: 10.1021/jp105758h.
5
CHARMM Additive All-Atom Force Field for Phosphate and Sulfate Linked to Carbohydrates.
J Chem Theory Comput. 2012 Feb 14;8(2):759-776. doi: 10.1021/ct200792v. Epub 2011 Dec 26.
7
Additive empirical force field for hexopyranose monosaccharides.
J Comput Chem. 2008 Nov 30;29(15):2543-64. doi: 10.1002/jcc.21004.
8
All-Atom Internal Coordinate Mechanics (ICM) Force Field for Hexopyranoses and Glycoproteins.
J Chem Theory Comput. 2015 May 12;11(5):2167-2186. doi: 10.1021/ct501138c. Epub 2015 Apr 2.
9
Extension of the CHARMM General Force Field to sulfonyl-containing compounds and its utility in biomolecular simulations.
J Comput Chem. 2012 Dec 5;33(31):2451-68. doi: 10.1002/jcc.23067. Epub 2012 Jul 23.
10
Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates.
J Comput Aided Mol Des. 2017 Apr;31(4):349-363. doi: 10.1007/s10822-017-0010-0. Epub 2017 Feb 11.

引用本文的文献

1
Introductory Tutorials for Simulating Protein Dynamics with GROMACS.
J Phys Chem B. 2024 Oct 3;128(39):9418-9435. doi: 10.1021/acs.jpcb.4c04901. Epub 2024 Sep 21.
2
CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed.
J Phys Chem B. 2024 Oct 17;128(41):9976-10042. doi: 10.1021/acs.jpcb.4c04100. Epub 2024 Sep 20.
4
charmm2gmx: An Automated Method to Port the CHARMM Additive Force Field to GROMACS.
J Chem Inf Model. 2023 Jul 24;63(14):4246-4252. doi: 10.1021/acs.jcim.3c00860. Epub 2023 Jul 3.
5
Cellulose-Hemicellulose-Lignin Interaction in the Secondary Cell Wall of Coconut Endocarp.
Biomimetics (Basel). 2023 May 4;8(2):188. doi: 10.3390/biomimetics8020188.
6
Force-tuned avidity of spike variant-ACE2 interactions viewed on the single-molecule level.
Nat Commun. 2022 Dec 24;13(1):7926. doi: 10.1038/s41467-022-35641-3.
7
Automation of AMOEBA polarizable force field for small molecules: Poltype 2.
J Comput Chem. 2022 Sep 5;43(23):1530-1542. doi: 10.1002/jcc.26954. Epub 2022 Jul 1.
8
Noninvasive and Individual-Centered Monitoring of Uric Acid for Precaution of Hyperuricemia via Optical Supramolecular Sensing.
Adv Sci (Weinh). 2022 Jun;9(18):e2104463. doi: 10.1002/advs.202104463. Epub 2022 Apr 28.

本文引用的文献

2
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
4
Additive empirical force field for hexopyranose monosaccharides.
J Comput Chem. 2008 Nov 30;29(15):2543-64. doi: 10.1002/jcc.21004.
5
Automated conformational energy fitting for force-field development.
J Mol Model. 2008 Aug;14(8):667-79. doi: 10.1007/s00894-008-0305-0. Epub 2008 May 6.
6
Molecular dynamics studies of polyethylene oxide and polyethylene glycol: hydrodynamic radius and shape anisotropy.
Biophys J. 2008 Aug;95(4):1590-9. doi: 10.1529/biophysj.108.133025. Epub 2008 May 2.
8
GLYCAM06: a generalizable biomolecular force field. Carbohydrates.
J Comput Chem. 2008 Mar;29(4):622-55. doi: 10.1002/jcc.20820.
9
Advances in methods and algorithms in a modern quantum chemistry program package.
Phys Chem Chem Phys. 2006 Jul 21;8(27):3172-91. doi: 10.1039/b517914a. Epub 2006 Jun 12.
10
Quantum mechanical analysis of 1,2-ethanediol conformational energetics and hydrogen bonding.
J Phys Chem A. 2006 Aug 17;110(32):9934-9. doi: 10.1021/jp0623241.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验