Suppr超能文献

脑铁转运的机制:对神经退行性变和中枢神经系统疾病的深入了解。

Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders.

机构信息

The Department of Molecular, Cellular, and Developmental Biology, the University of Michigan, 3089 Natural Science Building (Kraus), 830 North University, Ann Arbor, MI 48109, USA.

出版信息

Future Med Chem. 2010 Jan;2(1):51-64. doi: 10.4155/fmc.09.140.

Abstract

Trace metals such as iron, copper, zinc, manganese, and cobalt are essential cofactors for many cellular enzymes. Extensive research on iron, the most abundant transition metal in biology, has contributed to an increased understanding of the molecular machinery involved in maintaining its homeostasis in mammalian peripheral tissues. However, the cellular and intercellular iron transport mechanisms in the central nervous system (CNS) are still poorly understood. Accumulating evidence suggests that impaired iron metabolism is an initial cause of neurodegeneration, and several common genetic and sporadic neurodegenerative disorders have been proposed to be associated with dysregulated CNS iron homeostasis. This review aims to provide a summary of the molecular mechanisms of brain iron transport. Our discussion is focused on iron transport across endothelial cells of the blood-brain barrier and within the neuro- and glial-vascular units of the brain, with the aim of revealing novel therapeutic targets for neurodegenerative and CNS disorders.

摘要

痕量金属如铁、铜、锌、锰和钴是许多细胞酶的必需辅助因子。对生物学中最丰富的过渡金属铁的广泛研究,有助于增加对维持哺乳动物外周组织铁平衡的分子机制的理解。然而,中枢神经系统 (CNS) 中的细胞内和细胞间铁转运机制仍知之甚少。越来越多的证据表明,铁代谢失调是神经退行性变的最初原因,并且已经提出几种常见的遗传和散发性神经退行性疾病与中枢神经系统铁稳态失调有关。本综述旨在提供脑铁转运的分子机制概述。我们的讨论集中在血脑屏障内皮细胞和脑的神经胶质血管单元内的铁转运,目的是为神经退行性疾病和中枢神经系统疾病揭示新的治疗靶点。

相似文献

1
Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders.
Future Med Chem. 2010 Jan;2(1):51-64. doi: 10.4155/fmc.09.140.
2
Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases.
Pharmacol Ther. 2012 Feb;133(2):177-88. doi: 10.1016/j.pharmthera.2011.10.006. Epub 2011 Nov 13.
3
Brain iron homeostasis.
Dan Med Bull. 2002 Nov;49(4):279-301.
4
Endothelial cells are critical regulators of iron transport in a model of the human blood-brain barrier.
J Cereb Blood Flow Metab. 2019 Nov;39(11):2117-2131. doi: 10.1177/0271678X18783372. Epub 2018 Jun 18.
5
The role of transferrins and iron-related proteins in brain iron transport: applications to neurological diseases.
Adv Protein Chem Struct Biol. 2021;123:133-162. doi: 10.1016/bs.apcsb.2020.09.002. Epub 2020 Dec 19.
7
Regulatory mechanisms for iron transport across the blood-brain barrier.
Biochem Biophys Res Commun. 2017 Dec 9;494(1-2):70-75. doi: 10.1016/j.bbrc.2017.10.083. Epub 2017 Oct 17.
8
[Essential trace metals and brain function].
Yakugaku Zasshi. 2004 Sep;124(9):577-85. doi: 10.1248/yakushi.124.577.
9
DMT1 Expression and Iron Levels at the Crossroads Between Aging and Neurodegeneration.
Front Neurosci. 2019 Jun 5;13:575. doi: 10.3389/fnins.2019.00575. eCollection 2019.

引用本文的文献

2
Tracking Intracellular Labile Iron with a Genetically Encoded Fluorescent Reporter System Based on Protein Stability.
ACS Sens. 2025 Aug 22;10(8):5854-5861. doi: 10.1021/acssensors.5c01165. Epub 2025 Aug 1.
3
Crosstalk between copper, Alzheimer's disease, and melatonin.
Biometals. 2025 Jul 12. doi: 10.1007/s10534-025-00712-7.
4
Effects of iron accumulation and its chelation on oxidative stress in intracortical implants.
Acta Biomater. 2025 Jun 15;200:703-723. doi: 10.1016/j.actbio.2025.05.026. Epub 2025 May 10.
5
The role of ferroptosis in Alzheimer's disease: Mechanisms and therapeutic potential (Review).
Mol Med Rep. 2025 Jul;32(1). doi: 10.3892/mmr.2025.13557. Epub 2025 May 9.
6
Ferric Ammonium Citrate Reduces Claudin-5 Abundance and Function in Primary Mouse Brain Endothelial Cells.
Pharm Res. 2025 Feb;42(2):319-334. doi: 10.1007/s11095-025-03826-2. Epub 2025 Feb 12.
8
A Defined Diet Combined with Sonicated Inoculum Provides a High Incidence, Moderate Severity Form of Experimental Autoimmune Encephalomyelitis (EAE).
ACS Pharmacol Transl Sci. 2024 Nov 5;7(12):3827-3845. doi: 10.1021/acsptsci.4c00189. eCollection 2024 Dec 13.

本文引用的文献

2
Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier.
Int J Pharm. 2009 Sep 11;379(2):285-92. doi: 10.1016/j.ijpharm.2009.04.035. Epub 2009 May 3.
3
Cellular iron transport.
Biochim Biophys Acta. 2009 May;1790(5):309-25. doi: 10.1016/j.bbagen.2009.03.018. Epub 2009 Apr 1.
4
Iron is essential for neuron development and memory function in mouse hippocampus.
J Nutr. 2009 Apr;139(4):672-9. doi: 10.3945/jn.108.096354. Epub 2009 Feb 11.
5
TRPMLs: in sickness and in health.
Am J Physiol Renal Physiol. 2009 Jun;296(6):F1245-54. doi: 10.1152/ajprenal.90522.2008. Epub 2009 Jan 21.
6
Scara5 is a ferritin receptor mediating non-transferrin iron delivery.
Dev Cell. 2009 Jan;16(1):35-46. doi: 10.1016/j.devcel.2008.12.002.
7
Tim-2 is the receptor for H-ferritin on oligodendrocytes.
J Neurochem. 2008 Dec;107(6):1495-505. doi: 10.1111/j.1471-4159.2008.05678.x. Epub 2008 Nov 5.
8
Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson's disease.
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18578-83. doi: 10.1073/pnas.0804373105. Epub 2008 Nov 14.
10
Oligodendrocytes and myelination: the role of iron.
Glia. 2009 Apr 1;57(5):467-78. doi: 10.1002/glia.20784.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验