Suppr超能文献

内在肠道瘦素-黑皮质素途径调节肠微粒体甘油三酯转移蛋白和脂质吸收。

An intrinsic gut leptin-melanocortin pathway modulates intestinal microsomal triglyceride transfer protein and lipid absorption.

机构信息

Department of Cell Biology and Pediatrics, State University of New York Health Science Center at Brooklyn (SUNY Downstate Medical Center), Brooklyn, NY, USA.

出版信息

J Lipid Res. 2010 Jul;51(7):1929-42. doi: 10.1194/jlr.M005744. Epub 2010 Feb 17.

Abstract

Fat is delivered to tissues by apoB-containing lipoproteins synthesized in the liver and intestine with the help of an intracellular chaperone, microsomal triglyceride transfer protein (MTP). Leptin, a hormone secreted by adipose tissue, acts in the brain and on peripheral tissues to regulate fat storage and metabolism. Our aim was to identify the role of leptin signaling in MTP regulation and lipid absorption using several mouse models deficient in leptin receptor (LEPR) signaling and downstream effectors. Mice with spontaneous LEPR B mutations or targeted ablation of LEPR B in proopiomelanocortin (POMC) or agouti gene related peptide (AGRP) expressing cells had increased triglyceride in plasma, liver, and intestine. Furthermore, melanocortin 4 receptor (MC4R) knockout mice expressed a similar triglyceride phenotype, suggesting that leptin might regulate intestinal MTP expression through the melanocortin pathway. Mechanistic studies revealed that the accumulation of triglyceride in the intestine might be secondary to decreased expression of MTP and lipid absorption in these mice. Surgical and chemical blockade of vagal efferent outflow to the intestine in wild-type mice failed to alter the triglyceride phenotype, demonstrating that central neural control mechanisms were likely not involved in the observed regulation of intestinal MTP. Instead, we found that enterocytes express LEPR, POMC, AGRP, and MC4R. We propose that a peripheral, local gut signaling mechanism involving LEPR B and MC4R regulates intestinal MTP and controls intestinal lipid absorption.

摘要

脂肪由肝脏和肠道合成的载脂蛋白 B 脂蛋白携带并递送至组织,这一过程需要细胞内伴侣微体甘油三酯转移蛋白(MTP)的帮助。瘦素是一种由脂肪组织分泌的激素,在大脑和外周组织中发挥作用,调节脂肪储存和代谢。我们的目的是使用几种缺乏瘦素受体(LEPR)信号和下游效应物的小鼠模型,确定瘦素信号在 MTP 调节和脂质吸收中的作用。具有自发性 LEPR B 突变或靶向敲除 proopiomelanocortin(POMC)或刺鼠相关肽(AGRP)表达细胞中 LEPR B 的小鼠,其血浆、肝脏和肠道中的甘油三酯增加。此外,黑皮质素 4 受体(MC4R)敲除小鼠表现出相似的甘油三酯表型,表明瘦素可能通过黑皮质素途径调节肠道 MTP 表达。机制研究表明,这些小鼠肠道中甘油三酯的积累可能是由于 MTP 和脂质吸收表达减少所致。在野生型小鼠中,通过手术和化学方法阻断迷走神经传出纤维到肠道,未能改变甘油三酯表型,表明中枢神经控制机制可能不参与观察到的肠道 MTP 调节。相反,我们发现肠细胞表达 LEPR、POMC、AGRP 和 MC4R。我们提出,涉及 LEPR B 和 MC4R 的外周局部肠道信号机制调节肠道 MTP 并控制肠道脂质吸收。

相似文献

2
Leptin-mediated differential regulation of microsomal triglyceride transfer protein in the intestine and liver affects plasma lipids.
J Biol Chem. 2020 Mar 27;295(13):4101-4113. doi: 10.1074/jbc.RA119.011881. Epub 2020 Feb 11.
3
Differential contribution of POMC and AgRP neurons to the regulation of regional autonomic nerve activity by leptin.
Mol Metab. 2018 Feb;8:1-12. doi: 10.1016/j.molmet.2017.12.006. Epub 2017 Dec 18.
4
The melanocortin pathway and control of appetite-progress and therapeutic implications.
J Endocrinol. 2019 Apr 1;241(1):R1-R33. doi: 10.1530/JOE-18-0596.
5
The role of the leptin-melanocortin signalling pathway in the control of food intake.
Crit Rev Eukaryot Gene Expr. 2009;19(4):267-87. doi: 10.1615/critreveukargeneexpr.v19.i4.20.
7
Intestine-specific MTP and global ACAT2 deficiency lowers acute cholesterol absorption with chylomicrons and HDLs.
J Lipid Res. 2014 Nov;55(11):2261-75. doi: 10.1194/jlr.M047951. Epub 2014 Jul 16.
8
Leptin Signaling in AgRP Neurons Modulates Puberty Onset and Adult Fertility in Mice.
J Neurosci. 2017 Apr 5;37(14):3875-3886. doi: 10.1523/JNEUROSCI.3138-16.2017. Epub 2017 Mar 8.
9
Genetic identification of leptin neural circuits in energy and glucose homeostases.
Nature. 2018 Apr;556(7702):505-509. doi: 10.1038/s41586-018-0049-7. Epub 2018 Apr 18.
10

引用本文的文献

1
A brain-to-gut signal controls intestinal fat absorption.
Nature. 2024 Oct;634(8035):936-943. doi: 10.1038/s41586-024-07929-5. Epub 2024 Sep 11.
2
Fat absorption controlled by a brain-gut circuit.
Nature. 2024 Sep 11. doi: 10.1038/d41586-024-02932-2.
3
Signaling pathways in obesity: mechanisms and therapeutic interventions.
Signal Transduct Target Ther. 2022 Aug 28;7(1):298. doi: 10.1038/s41392-022-01149-x.
4
Multi-organ Coordination of Lipoprotein Secretion by Hormones, Nutrients and Neural Networks.
Endocr Rev. 2021 Nov 16;42(6):815-838. doi: 10.1210/endrev/bnab008.
5
Role of the Gut in Diabetic Dyslipidemia.
Front Endocrinol (Lausanne). 2020 Mar 13;11:116. doi: 10.3389/fendo.2020.00116. eCollection 2020.
6
Leptin-mediated differential regulation of microsomal triglyceride transfer protein in the intestine and liver affects plasma lipids.
J Biol Chem. 2020 Mar 27;295(13):4101-4113. doi: 10.1074/jbc.RA119.011881. Epub 2020 Feb 11.
7
Metabolic effects of leptin receptor knockdown or reconstitution in adipose tissues.
Sci Rep. 2019 Mar 1;9(1):3307. doi: 10.1038/s41598-019-39498-3.
8
System-wide Benefits of Intermeal Fasting by Autophagy.
Cell Metab. 2017 Dec 5;26(6):856-871.e5. doi: 10.1016/j.cmet.2017.09.020. Epub 2017 Oct 26.
9
Recent discoveries on absorption of dietary fat: Presence, synthesis, and metabolism of cytoplasmic lipid droplets within enterocytes.
Biochim Biophys Acta. 2016 Aug;1861(8 Pt A):730-47. doi: 10.1016/j.bbalip.2016.04.012. Epub 2016 Apr 20.

本文引用的文献

2
Role of central melanocortin pathways in energy homeostasis.
Trends Endocrinol Metab. 2009 Jul;20(5):203-15. doi: 10.1016/j.tem.2009.02.002. Epub 2009 Jun 21.
3
The geometry of leptin action in the brain: more complicated than a simple ARC.
Cell Metab. 2009 Feb;9(2):117-23. doi: 10.1016/j.cmet.2008.12.001.
4
New approaches to target microsomal triglyceride transfer protein.
Curr Opin Lipidol. 2008 Dec;19(6):572-8. doi: 10.1097/MOL.0b013e328312707c.
5
Leptin regulates peripheral lipid metabolism primarily through central effects on food intake.
Endocrinology. 2008 Nov;149(11):5432-9. doi: 10.1210/en.2008-0498. Epub 2008 Jul 17.
6
Microsomal triglyceride transfer protein in plasma and cellular lipid metabolism.
Curr Opin Lipidol. 2008 Jun;19(3):277-84. doi: 10.1097/MOL.0b013e3282feea85.
7
IRE1beta inhibits chylomicron production by selectively degrading MTP mRNA.
Cell Metab. 2008 May;7(5):445-55. doi: 10.1016/j.cmet.2008.03.005.
8
Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion.
Endocrinology. 2008 Apr;149(4):1773-85. doi: 10.1210/en.2007-1132. Epub 2007 Dec 27.
10
Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake.
Nat Med. 2006 May;12(5):534-40. doi: 10.1038/nm1392. Epub 2006 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验