Suppr超能文献

肠 Slc26 交换体从阴离子吸收到 HCOFormula 分泌模式的转换依赖于 CFTR 阴离子通道功能。

The switch of intestinal Slc26 exchangers from anion absorptive to HCOFormula secretory mode is dependent on CFTR anion channel function.

机构信息

Dept. of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany.

出版信息

Am J Physiol Cell Physiol. 2010 May;298(5):C1057-65. doi: 10.1152/ajpcell.00454.2009. Epub 2010 Feb 17.

Abstract

CFTR has been recognized to function as both an anion channel and a key regulator of Slc26 anion transporters in heterologous expression systems. Whether this regulatory relationship between CFTR and Slc26 transporters is seen in native intestine, and whether this effect is coupled to CFTR transport function or other features of this protein, has not been studied. The duodena of anesthetized CFTR-, NHE3-, Slc26a6-, and Scl26a3-deficient mice and wild-type (WT) littermates were perfused, and duodenal bicarbonate (HCO(3)(-)) secretion (DBS) and fluid absorptive or secretory rates were measured. The selective NHE3 inhibitor S1611 or genetic ablation of NHE3 significantly reduced fluid absorptive rates and increased DBS. Slc26a6 (PAT1) or Slc26a3 (DRA) ablation reduced the S1611-induced DBS increase and reduced fluid absorptive rates, suggesting that the effect of S1611 or NHE3 ablation on HCO(3)(-) secretion may be an unmasking of Slc26a6- and Slc26a3-mediated Cl(-)/HCO(3)(-) exchange activity. In the absence of CFTR expression or after application of the CFTR(inh)-172, fluid absorptive rates were similar to those of WT, but S1611 induced virtually no increase in DBS, demonstrating that CFTR transport activity, and not just its presence, is required for Slc26-mediated duodenal HCO(3)(-) secretion. A functionally active CFTR is an absolute requirement for Slc26-mediated duodenal HCO(3)(-) secretion, but not for Slc26-mediated fluid absorption, in which these transporters operate in conjunction with the Na(+)/H(+) exchanger NHE3. This suggests that Slc26a6 and Slc26a3 need proton recycling via NHE3 to operate in the Cl(-) absorptive mode and Cl(-) exit via CFTR to operate in the HCO(3)(-) secretory mode.

摘要

CFTR 已被证实可作为阴离子通道和 Slc26 阴离子转运体在异源表达系统中的关键调节剂。CFTR 与 Slc26 转运体之间的这种调节关系是否存在于天然肠道中,以及这种效应是否与 CFTR 转运功能或该蛋白的其他特征相关,尚未得到研究。麻醉 CFTR-、NHE3-、Slc26a6-和 Scl26a3 缺陷小鼠和野生型 (WT) 同窝仔鼠的十二指肠被灌流,并测量十二指肠碳酸氢盐 (HCO3(-)) 分泌 (DBS) 和液体吸收或分泌速率。选择性 NHE3 抑制剂 S1611 或 NHE3 的基因缺失显著降低了液体吸收速率并增加了 DBS。Slc26a6 (PAT1) 或 Slc26a3 (DRA) 的缺失减少了 S1611 诱导的 DBS 增加并降低了液体吸收速率,表明 S1611 或 NHE3 缺失对 HCO3(-) 分泌的影响可能是 Slc26a6 和 Slc26a3 介导的 Cl(-)/HCO3(-) 交换活性的揭示。在缺乏 CFTR 表达或应用 CFTR(inh)-172 后,液体吸收速率与 WT 相似,但 S1611 几乎没有诱导 DBS 增加,表明 CFTR 转运活性,而不仅仅是其存在,是 Slc26 介导的十二指肠 HCO3(-) 分泌所必需的。功能性 CFTR 是 Slc26 介导的十二指肠 HCO3(-) 分泌的绝对必需条件,但不是 Slc26 介导的液体吸收所必需的,在这种情况下,这些转运体与 Na(+)/H(+) 交换体 NHE3 一起运作。这表明 Slc26a6 和 Slc26a3 需要质子通过 NHE3 回收以在 Cl(-) 吸收模式下运作,并通过 CFTR 排出 Cl(-) 以在 HCO3(-) 分泌模式下运作。

相似文献

1
The switch of intestinal Slc26 exchangers from anion absorptive to HCOFormula secretory mode is dependent on CFTR anion channel function.
Am J Physiol Cell Physiol. 2010 May;298(5):C1057-65. doi: 10.1152/ajpcell.00454.2009. Epub 2010 Feb 17.
2
Molecular transport machinery involved in orchestrating luminal acid-induced duodenal bicarbonate secretion in vivo.
J Physiol. 2013 Nov 1;591(21):5377-91. doi: 10.1113/jphysiol.2013.254854. Epub 2013 Sep 9.
3
PAT-1 (Slc26a6) is the predominant apical membrane Cl-/HCO3- exchanger in the upper villous epithelium of the murine duodenum.
Am J Physiol Gastrointest Liver Physiol. 2007 Apr;292(4):G1079-88. doi: 10.1152/ajpgi.00354.2006. Epub 2006 Dec 14.
4
CFTR and its key role in in vivo resting and luminal acid-induced duodenal HCO3- secretion.
Acta Physiol (Oxf). 2008 Aug;193(4):357-65. doi: 10.1111/j.1748-1716.2008.01854.x. Epub 2008 Mar 21.
6
Role of down-regulated in adenoma anion exchanger in HCO3- secretion across murine duodenum.
Gastroenterology. 2009 Mar;136(3):893-901. doi: 10.1053/j.gastro.2008.11.016. Epub 2008 Nov 8.
7
CFTR inhibition augments NHE3 activity during luminal high CO2 exposure in rat duodenal mucosa.
Am J Physiol Gastrointest Liver Physiol. 2008 Jun;294(6):G1318-27. doi: 10.1152/ajpgi.00025.2008. Epub 2008 Apr 17.
8
SLC26 anion exchangers of guinea pig pancreatic duct: molecular cloning and functional characterization.
Am J Physiol Cell Physiol. 2011 Aug;301(2):C289-303. doi: 10.1152/ajpcell.00089.2011. Epub 2011 May 18.
9
Functional activity of Pat-1 (Slc26a6) Cl(−)/HCO₃(−) exchange in the lower villus epithelium of murine duodenum.
Acta Physiol (Oxf). 2011 Jan;201(1):21-31. doi: 10.1111/j.1748-1716.2010.02210.x. Epub 2010 Nov 12.
10
Chloride conductance of CFTR facilitates basal Cl-/HCO3- exchange in the villous epithelium of intact murine duodenum.
Am J Physiol Gastrointest Liver Physiol. 2005 Jun;288(6):G1241-51. doi: 10.1152/ajpgi.00493.2004. Epub 2005 Jan 13.

引用本文的文献

2
The Gene Product: Polymerisation and Post-Secretory Organisation-Current Models.
Polymers (Basel). 2024 Jun 12;16(12):1663. doi: 10.3390/polym16121663.
5
Bicarbonate secretion and acid/base sensing by the intestine.
Pflugers Arch. 2024 Apr;476(4):593-610. doi: 10.1007/s00424-024-02914-3. Epub 2024 Feb 19.
6
SLC26 Anion Transporters.
Handb Exp Pharmacol. 2024;283:319-360. doi: 10.1007/164_2023_698.
7
Low Ca diet leads to increased Ca retention by changing the gut flora and ileal pH value in laying hens.
Anim Nutr. 2023 Feb 25;13:270-281. doi: 10.1016/j.aninu.2023.02.006. eCollection 2023 Jun.
8
SLC26A3 (DRA) is stimulated in a synergistic, intracellular Ca-dependent manner by cAMP and ATP in intestinal epithelial cells.
Am J Physiol Cell Physiol. 2023 Jun 1;324(6):C1263-C1273. doi: 10.1152/ajpcell.00523.2022. Epub 2023 May 8.
9
Oxalate secretion is stimulated by a cAMP-dependent pathway in the mouse cecum.
Pflugers Arch. 2023 Feb;475(2):249-266. doi: 10.1007/s00424-022-02742-3. Epub 2022 Aug 31.
10
Effects of α2-adrenoceptor stimulation on luminal alkalinisation and net fluid flux in rat duodenum.
PLoS One. 2022 Aug 25;17(8):e0273208. doi: 10.1371/journal.pone.0273208. eCollection 2022.

本文引用的文献

2
Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator-dependent bicarbonate secretion.
J Clin Invest. 2009 Sep;119(9):2613-22. doi: 10.1172/JCI38662. Epub 2009 Aug 24.
3
Chloride channelopathies.
Biochim Biophys Acta. 2009 Mar;1792(3):173-89. doi: 10.1016/j.bbadis.2009.02.002.
4
Regulation of the intestinal anion exchanger DRA (downregulated in adenoma).
Ann N Y Acad Sci. 2009 May;1165:261-6. doi: 10.1111/j.1749-6632.2009.04044.x.
5
Hepatobiliary disease in patients with cystic fibrosis.
Curr Opin Gastroenterol. 2009 May;25(3):272-8. doi: 10.1097/MOG.0b013e3283298865.
6
Mechanisms of the noxious inflammatory cycle in cystic fibrosis.
Respir Res. 2009 Mar 13;10(1):23. doi: 10.1186/1465-9921-10-23.
7
Differential roles of NHERF1, NHERF2, and PDZK1 in regulating CFTR-mediated intestinal anion secretion in mice.
J Clin Invest. 2009 Mar;119(3):540-50. doi: 10.1172/JCI35541. Epub 2009 Feb 16.
8
Role of down-regulated in adenoma anion exchanger in HCO3- secretion across murine duodenum.
Gastroenterology. 2009 Mar;136(3):893-901. doi: 10.1053/j.gastro.2008.11.016. Epub 2008 Nov 8.
9
Cystic fibrosis and innate immunity: how chloride channel mutations provoke lung disease.
Cell Microbiol. 2009 Feb;11(2):208-16. doi: 10.1111/j.1462-5822.2008.01271.x. Epub 2008 Dec 2.
10
The cystic fibrosis transmembrane conductance regulator in reproductive health and disease.
J Physiol. 2009 May 15;587(Pt 10):2187-95. doi: 10.1113/jphysiol.2008.164970. Epub 2008 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验