Suppr超能文献

胚胎干细胞衍生的内皮细胞植入缺血性后肢并恢复灌注。

Embryonic stem cell-derived endothelial cells engraft into the ischemic hindlimb and restore perfusion.

机构信息

Division of Cardiovascular Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305-5406, USA.

出版信息

Arterioscler Thromb Vasc Biol. 2010 May;30(5):984-91. doi: 10.1161/ATVBAHA.110.202796. Epub 2010 Feb 18.

Abstract

OBJECTIVE

We examined the effect of delivery modality on the survival, localization, and functional effects of exogenously administered embryonic stem cells (ESCs) or endothelial cells derived from them (ESC-ECs) in the ischemic hindlimb.

METHODS AND RESULTS

Murine ESCs or ESC-ECs were stably transduced with a construct for bioluminescence imaging (BLI) and fluorescent detection. In a syngeneic murine model of limb ischemia, ESCs or ESC-ECs were delivered by intramuscular (IM), intrafemoral artery (IA), or intrafemoral vein injections (n=5 in each group). For 2 weeks, cell survival and localization were tracked by BLI and confirmed by immunohistochemistry, and functional improvement was assessed by laser Doppler perfusion. BLI showed that ESCs localized to the ischemic limb after IM or IA, but not after intrafemoral vein administration. Regardless of the route of administration, ESCs were detected outside the hindlimb circulation in the spleen or lungs. ESCs did not improve limb perfusion and generated teratomas. In contrast, ESC-ECs delivered by all 3 modalities localized to the ischemic limb, as assessed by BLI. Most surprisingly, ESC-EC injected intrafemoral vein eventually localized to the ischemic limb after initially lodging in the pulmonary circulation. Immunohistochemical studies confirmed the engraftment of ESC-ECs into the limb vasculature after 2 weeks. Notably, ESC-ECs were not detected in the spleen or lungs after 2 weeks, regardless of route of administration. Furthermore, ESC-ECs significantly improved limb perfusion and neovascularization compared with the parental ESCs or the vehicle control group.

CONCLUSION

In contrast to parental ESCs, ESC-ECs preferentially localized in the ischemic hindlimb by IA, IM, and intrafemoral vein delivery. ESC-ECs engrafted into the ischemic microvasculature, enhanced neovascularization, and improved limb perfusion.

摘要

目的

我们研究了分娩方式对缺血后肢中外源性给予的胚胎干细胞(ESCs)或其衍生的内皮细胞(ESC-ECs)的存活、定位和功能效果的影响。

方法和结果

将荧光素酶成像(BLI)和荧光检测的构建体稳定转导到小鼠 ESC 或 ESC-EC 中。在同种异体小鼠肢体缺血模型中,通过肌肉内(IM)、股动脉(IA)或股静脉注射(每组 5 只)给予 ESC 或 ESC-EC。在 2 周的时间里,通过 BLI 追踪细胞的存活和定位,并通过免疫组织化学进行确认,通过激光多普勒灌注评估功能改善。BLI 显示 ESC 在 IM 或 IA 后定位于缺血肢体,但在股静脉给药后则不行。无论给药途径如何,ESC 都在脾脏或肺部的下肢循环外被检测到。ESC 并未改善肢体灌注,并且产生了畸胎瘤。相比之下,通过所有 3 种方式给予的 ESC-EC 都能通过 BLI 定位到缺血肢体。最令人惊讶的是,最初在肺循环中定位的 ESC-EC 静脉内注射最终也能定位到缺血肢体。免疫组织化学研究证实了 ESC-EC 在 2 周后定植于肢体血管。值得注意的是,无论给药途径如何,2 周后都未在脾脏或肺部检测到 ESC-EC。此外,与亲代 ESC 或载体对照组相比,ESC-EC 显著改善了肢体灌注和新生血管化。

结论

与亲代 ESC 不同,ESC-EC 优先通过 IA、IM 和股静脉给药定位于缺血后肢。ESC-EC 定植于缺血性微血管,增强了新生血管化并改善了肢体灌注。

相似文献

1
Embryonic stem cell-derived endothelial cells engraft into the ischemic hindlimb and restore perfusion.
Arterioscler Thromb Vasc Biol. 2010 May;30(5):984-91. doi: 10.1161/ATVBAHA.110.202796. Epub 2010 Feb 18.
3
Molecular imaging of bone marrow mononuclear cell survival and homing in murine peripheral artery disease.
JACC Cardiovasc Imaging. 2012 Jan;5(1):46-55. doi: 10.1016/j.jcmg.2011.07.011.
8
Glycolytic PFKFB3 and Glycogenic UGP2 Axis Regulates Perfusion Recovery in Experimental Hind Limb Ischemia.
Arterioscler Thromb Vasc Biol. 2024 Aug;44(8):1764-1783. doi: 10.1161/ATVBAHA.124.320665. Epub 2024 Jun 27.
10
HMGB1 and TLR4 mediate skeletal muscle recovery in a murine model of hindlimb ischemia.
J Vasc Surg. 2013 Aug;58(2):460-9. doi: 10.1016/j.jvs.2012.11.071. Epub 2013 Feb 12.

引用本文的文献

1
SCIG: Machine learning uncovers cell identity genes in single cells by genetic sequence codes.
Nucleic Acids Res. 2025 May 22;53(10). doi: 10.1093/nar/gkaf431.
2
Enhancing endothelial colony-forming cells for treating diabetic vascular complications: challenges and clinical prospects.
Front Endocrinol (Lausanne). 2024 Jul 15;15:1396794. doi: 10.3389/fendo.2024.1396794. eCollection 2024.
3
Advances and challenges in regenerative therapies for abdominal aortic aneurysm.
Front Cardiovasc Med. 2024 Jun 4;11:1369785. doi: 10.3389/fcvm.2024.1369785. eCollection 2024.
4
Clonal and Scalable Endothelial Progenitor Cell Lines from Human Pluripotent Stem Cells.
Biomedicines. 2023 Oct 13;11(10):2777. doi: 10.3390/biomedicines11102777.
5
Single-Cell RNA-seq Analysis of a Human Embryonic Stem Cell to Endothelial Cell System Based on Transcription Factor Overexpression.
Stem Cell Rev Rep. 2023 Oct;19(7):2497-2509. doi: 10.1007/s12015-023-10598-y. Epub 2023 Aug 4.
7
Single-photon emission computed tomography as a fundamental tool in evaluation of myocardial reparation and regeneration therapies.
Postepy Kardiol Interwencyjnej. 2022 Dec;18(4):326-339. doi: 10.5114/aic.2023.124403. Epub 2023 Jan 23.
8
Therapeutic angiogenesis-based strategy for peripheral artery disease.
Theranostics. 2022 Jun 27;12(11):5015-5033. doi: 10.7150/thno.74785. eCollection 2022.
9
Human Induced Pluripotent Stem Cell-Derived Vascular Cells: Recent Progress and Future Directions.
J Cardiovasc Dev Dis. 2021 Nov 4;8(11):148. doi: 10.3390/jcdd8110148.
10
New Directions in Therapeutic Angiogenesis and Arteriogenesis in Peripheral Arterial Disease.
Circ Res. 2021 Jun 11;128(12):1944-1957. doi: 10.1161/CIRCRESAHA.121.318266. Epub 2021 Jun 10.

本文引用的文献

3
Murine model of hindlimb ischemia.
J Vis Exp. 2009 Jan 21(23):1035. doi: 10.3791/1035.
5
Fate of undifferentiated mouse embryonic stem cells within the rat heart: role of myocardial infarction and immune suppression.
J Cell Mol Med. 2009 Jan;13(1):188-201. doi: 10.1111/j.1582-4934.2008.00323.x. Epub 2008 Mar 28.
9
10
Pathway for differentiation of human embryonic stem cells to vascular cell components and their potential for vascular regeneration.
Arterioscler Thromb Vasc Biol. 2007 Oct;27(10):2127-34. doi: 10.1161/ATVBAHA.107.143149. Epub 2007 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验