Suppr超能文献

糖尿病中由 caveolae 介导的血管紧张素 II 信号调节冠状动脉 BK 通道。

Regulation of coronary arterial BK channels by caveolae-mediated angiotensin II signaling in diabetes mellitus.

机构信息

Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.

出版信息

Circ Res. 2010 Apr 2;106(6):1164-73. doi: 10.1161/CIRCRESAHA.109.209767. Epub 2010 Feb 18.

Abstract

RATIONALE

The large conductance Ca(2+)-activated K(+) (BK) channel, a key determinant of vascular tone, is regulated by angiotensin II (Ang II) type 1 receptor signaling. Upregulation of Ang II functions and downregulation of BK channel activities have been reported in diabetic vessels. However, the molecular mechanisms underlying Ang II-mediated BK channel modulation, especially in diabetes mellitus, have not been thoroughly examined.

OBJECTIVES

The aim in this study was to determine whether caveolae-targeting facilitates BK channel dysfunction in diabetic vessels.

METHODS AND RESULTS

Using patch clamp techniques and molecular biological approaches, we found that BK channels, Ang II type 1 receptor, G(alphaq/11) (G protein q/11 alpha subunit), nonphagocytic NAD(P)H oxidases (NOX-1), and c-Src kinases (c-Src) were colocalized in the caveolae of rat arterial smooth muscle cells and the integrity of caveolae in smooth muscle cells was critical for Ang II-mediated BK channel regulation. Most importantly, membrane microdomain targeting of these proteins was upregulated in the caveolae of streptozotocin-induced rat diabetic vessels, leading to enhanced Ang II-induced redox-mediated BK channel modification and causing BK channel and coronary dysfunction. The absence of caveolae abolished the effects of Ang II on vascular BK channel activity and preserved BK channel function in diabetes.

CONCLUSIONS

These results identified a molecular scheme of receptor/enzyme/channel/caveolae microdomain complex that facilitates the development of vascular BK channel dysfunction in diabetes.

摘要

理由

大电导钙激活钾(BK)通道是血管张力的关键决定因素,受血管紧张素 II(Ang II)型 1 受体信号转导调节。糖尿病血管中 Ang II 功能上调和 BK 通道活性下调已有报道。然而,Ang II 介导的 BK 通道调节的分子机制,特别是在糖尿病中,尚未得到彻底研究。

目的

本研究旨在确定是否靶向质膜小窝有利于糖尿病血管中的 BK 通道功能障碍。

方法和结果

使用膜片钳技术和分子生物学方法,我们发现 BK 通道、Ang II 型 1 受体、G(alphaq/11)(G 蛋白 q/11 alpha 亚基)、非吞噬性 NAD(P)H 氧化酶(NOX-1)和 c-Src 激酶(c-Src)在大鼠动脉平滑肌细胞的质膜小窝中存在共定位,并且质膜小窝中平滑肌细胞的质膜小窝完整性对于 Ang II 介导的 BK 通道调节至关重要。最重要的是,这些蛋白在链脲佐菌素诱导的大鼠糖尿病血管中质膜小窝的膜微区靶向作用上调,导致增强的 Ang II 诱导的氧化还原介导的 BK 通道修饰,并导致 BK 通道和冠状功能障碍。质膜小窝的缺失消除了 Ang II 对血管 BK 通道活性的影响,并在糖尿病中保留了 BK 通道功能。

结论

这些结果确定了一种受体/酶/通道/质膜小窝微区复合物的分子方案,该方案促进了糖尿病中血管 BK 通道功能障碍的发展。

相似文献

1
Regulation of coronary arterial BK channels by caveolae-mediated angiotensin II signaling in diabetes mellitus.
Circ Res. 2010 Apr 2;106(6):1164-73. doi: 10.1161/CIRCRESAHA.109.209767. Epub 2010 Feb 18.
2
Coronary arterial BK channel dysfunction exacerbates ischemia/reperfusion-induced myocardial injury in diabetic mice.
Appl Physiol Nutr Metab. 2016 Sep;41(9):992-1001. doi: 10.1139/apnm-2016-0048.
6
Regulation of large conductance Ca2+-activated K+ (BK) channel β1 subunit expression by muscle RING finger protein 1 in diabetic vessels.
J Biol Chem. 2014 Apr 11;289(15):10853-10864. doi: 10.1074/jbc.M113.520940. Epub 2014 Feb 25.
8
Angiotensin II stimulates internalization and degradation of arterial myocyte plasma membrane BK channels to induce vasoconstriction.
Am J Physiol Cell Physiol. 2015 Sep 15;309(6):C392-402. doi: 10.1152/ajpcell.00127.2015. Epub 2015 Jul 15.
9
Sorbs2 Deficiency and Vascular BK Channelopathy in Diabetes.
Circ Res. 2024 Mar 29;134(7):858-871. doi: 10.1161/CIRCRESAHA.123.323538. Epub 2024 Feb 16.
10
Rotenone partially reverses decreased BK Ca currents in cerebral artery smooth muscle cells from streptozotocin-induced diabetic mice.
Clin Exp Pharmacol Physiol. 2009 Oct;36(10):e57-64. doi: 10.1111/j.1440-1681.2009.05222.x. Epub 2009 Jun 8.

引用本文的文献

2
Coronary Large Conductance Ca-Activated K Channel Dysfunction in Diabetes Mellitus.
Front Physiol. 2021 Oct 21;12:750618. doi: 10.3389/fphys.2021.750618. eCollection 2021.
3
Changes in ion channel expression and function associated with cardiac arrhythmogenic remodeling by Sorbs2.
Biochim Biophys Acta Mol Basis Dis. 2021 Dec 1;1867(12):166247. doi: 10.1016/j.bbadis.2021.166247. Epub 2021 Sep 4.
4
Cellular and molecular effects of hyperglycemia on ion channels in vascular smooth muscle.
Cell Mol Life Sci. 2021 Jan;78(1):31-61. doi: 10.1007/s00018-020-03582-z. Epub 2020 Jun 27.
5
BK Channel Dysfunction in Diabetic Coronary Artery: Role of the E3 Ubiquitin Ligases.
Front Physiol. 2020 May 29;11:453. doi: 10.3389/fphys.2020.00453. eCollection 2020.
6
Update on Alterations in Cancer: Implications for Uveal Melanoma Treatment.
Cancers (Basel). 2020 Jun 10;12(6):1524. doi: 10.3390/cancers12061524.
7
Regulation of KCNMA1 transcription by Nrf2 in coronary arterial smooth muscle cells.
J Mol Cell Cardiol. 2020 Mar;140:68-76. doi: 10.1016/j.yjmcc.2020.03.001. Epub 2020 Mar 5.
8
Differential effects of membrane sphingomyelin and cholesterol on agonist-induced bitter taste receptor T2R14 signaling.
Mol Cell Biochem. 2020 Jan;463(1-2):57-66. doi: 10.1007/s11010-019-03628-2. Epub 2019 Sep 20.
9
F-box protein-32 down-regulates small-conductance calcium-activated potassium channel 2 in diabetic mouse atria.
J Biol Chem. 2019 Mar 15;294(11):4160-4168. doi: 10.1074/jbc.RA118.003837. Epub 2019 Jan 11.

本文引用的文献

2
Slo1 caveolin-binding motif, a mechanism of caveolin-1-Slo1 interaction regulating Slo1 surface expression.
J Biol Chem. 2008 Feb 22;283(8):4808-17. doi: 10.1074/jbc.M709802200. Epub 2007 Dec 12.
3
Angiotensin II and the cardiac complications of diabetes mellitus.
Curr Pharm Des. 2007;13(26):2721-9. doi: 10.2174/138161207781662984.
4
Caveolin-dependent angiotensin II type 1 receptor signaling in vascular smooth muscle.
Hypertension. 2006 Nov;48(5):797-803. doi: 10.1161/01.HYP.0000242907.70697.5d. Epub 2006 Oct 2.
5
Molecular mechanisms mediating inhibition of human large conductance Ca2+-activated K+ channels by high glucose.
Circ Res. 2006 Sep 15;99(6):607-16. doi: 10.1161/01.RES.0000243147.41792.93. Epub 2006 Aug 24.
6
Impairment of the vascular relaxation and differential expression of caveolin-1 of the aorta of diabetic +db/+db mice.
Eur J Pharmacol. 2006 Sep 28;546(1-3):134-41. doi: 10.1016/j.ejphar.2006.07.003. Epub 2006 Jul 13.
7
Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system.
Am J Physiol Cell Physiol. 2007 Jan;292(1):C82-97. doi: 10.1152/ajpcell.00287.2006. Epub 2006 Jul 26.
8
Cardiac and vascular KATP channels in rats are activated by endogenous epoxyeicosatrienoic acids through different mechanisms.
J Physiol. 2006 Sep 1;575(Pt 2):627-44. doi: 10.1113/jphysiol.2006.113985. Epub 2006 Jun 22.
9
Decreased blood pressure in NOX1-deficient mice.
FEBS Lett. 2006 Jan 23;580(2):497-504. doi: 10.1016/j.febslet.2005.12.049. Epub 2005 Dec 22.
10
Molecular composition and regulation of the Nox family NAD(P)H oxidases.
Biochem Biophys Res Commun. 2005 Dec 9;338(1):677-86. doi: 10.1016/j.bbrc.2005.08.210. Epub 2005 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验