Suppr超能文献

高通量鉴定蛋白质定位依赖关系网络。

High-throughput identification of protein localization dependency networks.

机构信息

Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4681-6. doi: 10.1073/pnas.1000846107. Epub 2010 Feb 22.

Abstract

Bacterial cells are highly organized with many protein complexes and DNA loci dynamically positioned to distinct subcellular sites over the course of a cell cycle. Such dynamic protein localization is essential for polar organelle development, establishment of asymmetry, and chromosome replication during the Caulobacter crescentus cell cycle. We used a fluorescence microscopy screen optimized for high-throughput to find strains with anomalous temporal or spatial protein localization patterns in transposon-generated mutant libraries. Automated image acquisition and analysis allowed us to identify genes that affect the localization of two polar cell cycle histidine kinases, PleC and DivJ, and the pole-specific pili protein CpaE, each tagged with a different fluorescent marker in a single strain. Four metrics characterizing the observed localization patterns of each of the three labeled proteins were extracted for hundreds of cell images from each of 854 mapped mutant strains. Using cluster analysis of the resulting set of 12-element vectors for each of these strains, we identified 52 strains with mutations that affected the localization pattern of the three tagged proteins. This information, combined with quantitative localization data from epitasis experiments, also identified all previously known proteins affecting such localization. These studies provide insights into factors affecting the PleC/DivJ localization network and into regulatory links between the localization of the pili assembly protein CpaE and the kinase localization pathway. Our high-throughput screening methodology can be adapted readily to any sequenced bacterial species, opening the potential for databases of localization regulatory networks across species, and investigation of localization network phylogenies.

摘要

细菌细胞高度组织化,许多蛋白质复合物和 DNA 位点在细胞周期中动态定位到不同的亚细胞部位。这种动态的蛋白质定位对于杆状菌属新月形细胞周期中极性细胞器的发育、不对称性的建立和染色体复制至关重要。我们使用了一种经过优化的荧光显微镜筛选方法,可用于高通量筛选转座子生成的突变文库中异常的时空蛋白质定位模式的菌株。自动化的图像采集和分析使我们能够识别影响两种极性细胞周期组氨酸激酶 PleC 和 DivJ 以及极性特异性菌毛蛋白 CpaE 定位的基因,每个基因都在一个菌株中用不同的荧光标记进行标记。从 854 个映射突变株中的每个菌株的数百个细胞图像中提取了这三种标记蛋白的观察到的定位模式的四个特征指标。使用对这些菌株中的每一个的这三个标记蛋白的 12 元素向量集的聚类分析,我们鉴定了 52 个具有影响三种标记蛋白定位模式的突变的菌株。这些信息,结合来自上位性实验的定量定位数据,还鉴定了所有先前已知的影响这种定位的蛋白质。这些研究提供了对影响 PleC/DivJ 定位网络的因素的深入了解,以及菌毛组装蛋白 CpaE 的定位与激酶定位途径之间的调节联系。我们的高通量筛选方法可以很容易地适应任何测序的细菌物种,为跨物种的定位调节网络数据库的建立和定位网络系统发育的研究开辟了可能性。

相似文献

1
High-throughput identification of protein localization dependency networks.
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4681-6. doi: 10.1073/pnas.1000846107. Epub 2010 Feb 22.
4
Identification of a localization factor for the polar positioning of bacterial structural and regulatory proteins.
Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13831-6. doi: 10.1073/pnas.182411999. Epub 2002 Oct 7.
7
A Localized Complex of Two Protein Oligomers Controls the Orientation of Cell Polarity.
mBio. 2017 Feb 28;8(1):e02238-16. doi: 10.1128/mBio.02238-16.
8
Dynamic localization of a cytoplasmic signal transduction response regulator controls morphogenesis during the Caulobacter cell cycle.
Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):4095-100. doi: 10.1073/pnas.051609998. Epub 2001 Mar 13.

引用本文的文献

1
Large-scale identification of genes involved in septal pore plugging in multicellular fungi.
Nat Commun. 2023 Mar 17;14(1):1418. doi: 10.1038/s41467-023-36925-y.
2
3
Computational modeling of unphosphorylated CtrA: binding in the cell cycle.
iScience. 2021 Nov 10;24(12):103413. doi: 10.1016/j.isci.2021.103413. eCollection 2021 Dec 17.
4
Dissecting Cellular Function and Distribution of β-Glucosidases in Trichoderma reesei.
mBio. 2021 May 11;12(3):e03671-20. doi: 10.1128/mBio.03671-20.
5
The type IV pilin PilA couples surface attachment and cell-cycle initiation in .
Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9546-9553. doi: 10.1073/pnas.1920143117. Epub 2020 Apr 15.
6
Discovery and Therapeutic Targeting of Differentiated Biofilm Subpopulations.
Front Microbiol. 2019 Aug 27;10:1908. doi: 10.3389/fmicb.2019.01908. eCollection 2019.
7
MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis.
Nat Microbiol. 2016 Jun 20;1(7):16077. doi: 10.1038/nmicrobiol.2016.77.
8
New Technologies for Studying Biofilms.
Microbiol Spectr. 2015 Aug;3(4). doi: 10.1128/microbiolspec.MB-0016-2014.
9
Dynamical Localization of DivL and PleC in the Asymmetric Division Cycle of Caulobacter crescentus: A Theoretical Investigation of Alternative Models.
PLoS Comput Biol. 2015 Jul 17;11(7):e1004348. doi: 10.1371/journal.pcbi.1004348. eCollection 2015 Jul.
10
Effects of (p)ppGpp on the progression of the cell cycle of Caulobacter crescentus.
J Bacteriol. 2014 Jul;196(14):2514-25. doi: 10.1128/JB.01575-14. Epub 2014 May 2.

本文引用的文献

1
Quantitative genome-scale analysis of protein localization in an asymmetric bacterium.
Proc Natl Acad Sci U S A. 2009 May 12;106(19):7858-63. doi: 10.1073/pnas.0901781106. Epub 2009 Apr 22.
2
PSICIC: noise and asymmetry in bacterial division revealed by computational image analysis at sub-pixel resolution.
PLoS Comput Biol. 2008 Nov;4(11):e1000233. doi: 10.1371/journal.pcbi.1000233. Epub 2008 Nov 28.
3
Group II intron protein localization and insertion sites are affected by polyphosphate.
PLoS Biol. 2008 Jun 24;6(6):e150. doi: 10.1371/journal.pbio.0060150.
4
Screen for localized proteins in Caulobacter crescentus.
PLoS One. 2008 Mar 12;3(3):e1756. doi: 10.1371/journal.pone.0001756.
6
Spatial complexity and control of a bacterial cell cycle.
Curr Opin Biotechnol. 2007 Aug;18(4):333-40. doi: 10.1016/j.copbio.2007.07.007. Epub 2007 Aug 20.
8
High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons.
Nat Biotechnol. 2007 May;25(5):584-92. doi: 10.1038/nbt1294. Epub 2007 Apr 1.
9
High-throughput fluorescence microscopy for systems biology.
Nat Rev Mol Cell Biol. 2006 Sep;7(9):690-6. doi: 10.1038/nrm1979. Epub 2006 Jul 19.
10
MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter.
Cell. 2006 Jul 14;126(1):147-62. doi: 10.1016/j.cell.2006.05.038.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验