Suppr超能文献

通过几何嵌入和局部敏感哈希加速大型化合物集的相似性搜索和聚类。

Accelerated similarity searching and clustering of large compound sets by geometric embedding and locality sensitive hashing.

机构信息

Department of Computer Science & Engineering and Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA.

出版信息

Bioinformatics. 2010 Apr 1;26(7):953-9. doi: 10.1093/bioinformatics/btq067. Epub 2010 Feb 23.

Abstract

MOTIVATION

Similarity searching and clustering of chemical compounds by structural similarities are important computational approaches for identifying drug-like small molecules. Most algorithms available for these tasks are limited by their speed and scalability, and cannot handle today's large compound databases with several million entries.

RESULTS

In this article, we introduce a new algorithm for accelerated similarity searching and clustering of very large compound sets using embedding and indexing (EI) techniques. First, we present EI-Search as a general purpose similarity search method for finding objects with similar features in large databases and apply it here to searching and clustering of large compound sets. The method embeds the compounds in a high-dimensional Euclidean space and searches this space using an efficient index-aware nearest neighbor search method based on locality sensitive hashing (LSH). Second, to cluster large compound sets, we introduce the EI-Clustering algorithm that combines the EI-Search method with Jarvis-Patrick clustering. Both methods were tested on three large datasets with sizes ranging from about 260 000 to over 19 million compounds. In comparison to sequential search methods, the EI-Search method was 40-200 times faster, while maintaining comparable recall rates. The EI-Clustering method allowed us to significantly reduce the CPU time required to cluster these large compound libraries from several months to only a few days.

AVAILABILITY

Software implementations and online services have been developed based on the methods introduced in this study. The online services provide access to the generated clustering results and ultra-fast similarity searching of the PubChem Compound database with subsecond response time.

摘要

动机

通过结构相似性对化合物进行相似性搜索和聚类是识别类药性小分子的重要计算方法。大多数可用于这些任务的算法受到速度和可扩展性的限制,无法处理当今具有数百万条记录的大型化合物数据库。

结果

在本文中,我们介绍了一种使用嵌入和索引 (EI) 技术加速大型化合物集相似性搜索和聚类的新算法。首先,我们提出了 EI-Search,它是一种通用的相似性搜索方法,用于在大型数据库中查找具有相似特征的对象,并将其应用于大型化合物集的搜索和聚类。该方法将化合物嵌入到高维欧几里得空间中,并使用基于局部敏感哈希 (LSH) 的高效索引感知最近邻搜索方法搜索该空间。其次,为了对大型化合物集进行聚类,我们引入了 EI-Clustering 算法,它将 EI-Search 方法与 Jarvis-Patrick 聚类相结合。这两种方法都在三个大小从约 26 万到超过 1900 万化合物的大型数据集上进行了测试。与顺序搜索方法相比,EI-Search 方法的速度快了 40-200 倍,同时保持了可比的召回率。EI-Clustering 方法使我们能够将这些大型化合物库的聚类所需的 CPU 时间从几个月缩短到仅几天。

可用性

已基于本研究中介绍的方法开发了软件实现和在线服务。在线服务提供对生成的聚类结果的访问以及对 PubChem 化合物数据库的超快速相似性搜索,响应时间不到一秒。

相似文献

1
Accelerated similarity searching and clustering of large compound sets by geometric embedding and locality sensitive hashing.
Bioinformatics. 2010 Apr 1;26(7):953-9. doi: 10.1093/bioinformatics/btq067. Epub 2010 Feb 23.
2
msCRUSH: Fast Tandem Mass Spectral Clustering Using Locality Sensitive Hashing.
J Proteome Res. 2019 Jan 4;18(1):147-158. doi: 10.1021/acs.jproteome.8b00448. Epub 2018 Dec 14.
3
Application of kernel functions for accurate similarity search in large chemical databases.
BMC Bioinformatics. 2010 Apr 29;11 Suppl 3(Suppl 3):S8. doi: 10.1186/1471-2105-11-S3-S8.
4
A fast approximate nearest neighbor search algorithm in the Hamming space.
IEEE Trans Pattern Anal Mach Intell. 2012 Dec;34(12):2481-8. doi: 10.1109/TPAMI.2012.170.
5
High similarity sequence comparison in clustering large sequence databases.
Proc IEEE Comput Soc Bioinform Conf. 2002;1:228-36.
6
Rapid object indexing using locality sensitive hashing and joint 3D-signature space estimation.
IEEE Trans Pattern Anal Mach Intell. 2006 Jul;28(7):1111-26. doi: 10.1109/TPAMI.2006.148.
7
A modified hyperplane clustering algorithm allows for efficient and accurate clustering of extremely large datasets.
Bioinformatics. 2009 May 1;25(9):1152-7. doi: 10.1093/bioinformatics/btp123. Epub 2009 Mar 4.
8
Enhancing MEDLINE document clustering by incorporating MeSH semantic similarity.
Bioinformatics. 2009 Aug 1;25(15):1944-51. doi: 10.1093/bioinformatics/btp338. Epub 2009 Jun 3.
9
MMseqs software suite for fast and deep clustering and searching of large protein sequence sets.
Bioinformatics. 2016 May 1;32(9):1323-30. doi: 10.1093/bioinformatics/btw006. Epub 2016 Jan 6.
10
Scalable partitioning and exploration of chemical spaces using geometric hashing.
J Chem Inf Model. 2006 Jan-Feb;46(1):321-33. doi: 10.1021/ci050403o.

引用本文的文献

1
Utilizing Low-Dimensional Molecular Embeddings for Rapid Chemical Similarity Search.
Adv Inf Retr. 2024 Mar;14609:34-49. doi: 10.1007/978-3-031-56060-6_3. Epub 2024 Mar 16.
2
The chemfp project.
J Cheminform. 2019 Dec 5;11(1):76. doi: 10.1186/s13321-019-0398-8.
3
A probabilistic molecular fingerprint for big data settings.
J Cheminform. 2018 Dec 18;10(1):66. doi: 10.1186/s13321-018-0321-8.
4
Probing the chemical-biological relationship space with the Drug Target Explorer.
J Cheminform. 2018 Aug 20;10(1):41. doi: 10.1186/s13321-018-0297-4.
5
bioassayR: Cross-Target Analysis of Small Molecule Bioactivity.
J Chem Inf Model. 2016 Jul 25;56(7):1237-42. doi: 10.1021/acs.jcim.6b00109. Epub 2016 Jul 12.
6
Antibacterial mechanisms identified through structural systems pharmacology.
BMC Syst Biol. 2013 Oct 10;7:102. doi: 10.1186/1752-0509-7-102.
7
ChemMine tools: an online service for analyzing and clustering small molecules.
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W486-91. doi: 10.1093/nar/gkr320. Epub 2011 May 16.

本文引用的文献

1
Speeding up chemical database searches using a proximity filter based on the logical exclusive or.
J Chem Inf Model. 2008 Jul;48(7):1367-78. doi: 10.1021/ci800076s. Epub 2008 Jul 2.
2
A maximum common substructure-based algorithm for searching and predicting drug-like compounds.
Bioinformatics. 2008 Jul 1;24(13):i366-74. doi: 10.1093/bioinformatics/btn186.
3
ChemBank: a small-molecule screening and cheminformatics resource database.
Nucleic Acids Res. 2008 Jan;36(Database issue):D351-9. doi: 10.1093/nar/gkm843. Epub 2007 Oct 18.
4
Systems chemical biology.
Nat Chem Biol. 2007 Aug;3(8):447-50. doi: 10.1038/nchembio0807-447.
5
ChemDB update--full-text search and virtual chemical space.
Bioinformatics. 2007 Sep 1;23(17):2348-51. doi: 10.1093/bioinformatics/btm341. Epub 2007 Jun 28.
6
Bounds and algorithms for fast exact searches of chemical fingerprints in linear and sublinear time.
J Chem Inf Model. 2007 Mar-Apr;47(2):302-17. doi: 10.1021/ci600358f. Epub 2007 Feb 28.
7
Structure-based maximal affinity model predicts small-molecule druggability.
Nat Biotechnol. 2007 Jan;25(1):71-5. doi: 10.1038/nbt1273.
8
Visualization and interpretation of high content screening data.
J Chem Inf Model. 2006 Jan-Feb;46(1):201-7. doi: 10.1021/ci050404g.
9
Searching techniques for databases of two- and three-dimensional chemical structures.
J Med Chem. 2005 Jun 30;48(13):4183-99. doi: 10.1021/jm0582165.
10
ChemMine. A compound mining database for chemical genomics.
Plant Physiol. 2005 Jun;138(2):573-7. doi: 10.1104/pp.105.062687.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验