Suppr超能文献

浮游单细胞生物中竞争与防御专家之间的权衡:重新审视“杀死赢家”假说。

Trade-offs between competition and defense specialists among unicellular planktonic organisms: the "killing the winner" hypothesis revisited.

机构信息

University of Vienna, Faculty of Life Sciences, Department of Marine Biology, Althanstrasse 14, 1090 Vienna, Austria.

出版信息

Microbiol Mol Biol Rev. 2010 Mar;74(1):42-57. doi: 10.1128/MMBR.00034-09.

Abstract

A trade-off between strategies maximizing growth and minimizing losses appears to be a fundamental property of evolving biological entities existing in environments with limited resources. In the special case of unicellular planktonic organisms, the theoretical framework describing the trade-offs between competition and defense specialists is known as the "killing the winner" hypothesis (KtW). KtW describes how the availability of resources and the actions of predators (e.g., heterotrophic flagellates) and parasites (e.g., viruses) determine the composition and biogeochemical impact of such organisms. We extend KtW conceptually by introducing size- or shape-selective grazing of protozoans on prokaryotes into an idealized food web composed of prokaryotes, lytic viruses infecting prokaryotes, and protozoans. This results in a hierarchy analogous to a Russian doll, where KtW principles are at work on a lower level due to selective viral infection and on an upper level due to size- or shape-selective grazing by protozoans. Additionally, we critically discuss predictions and limitations of KtW in light of the recent literature, with particular focus on typically neglected aspects of KtW. Many aspects of KtW have been corroborated by in situ and experimental studies of isolates and natural communities. However, a thorough test of KtW is still hampered by current methodological limitations. In particular, the quantification of nutrient uptake rates of the competing prokaryotic populations and virus population-specific adsorption and decay rates appears to be the most daunting challenge for the years to come.

摘要

在资源有限的环境中,生物实体的进化似乎存在一种在最大化生长和最小化损失之间进行权衡的策略,这是一种基本特性。在单细胞浮游生物的特殊情况下,描述竞争和防御专家之间权衡的理论框架被称为“杀死赢家”假说(KtW)。KtW 描述了资源的可用性以及捕食者(例如异养鞭毛虫)和寄生虫(例如病毒)的作用如何决定这些生物的组成和生物地球化学影响。我们通过将原生动物对原核生物的大小或形状选择性摄食引入由原核生物、感染原核生物的裂解病毒和原生动物组成的理想化食物网中,从概念上扩展了 KtW 概念。这导致了类似于俄罗斯套娃的层次结构,其中 KtW 原则由于选择性病毒感染而在较低层次起作用,由于原生动物的大小或形状选择性摄食而在较高层次起作用。此外,我们根据最近的文献批判性地讨论了 KtW 的预测和局限性,特别关注 KtW 通常被忽视的方面。KtW 的许多方面已经通过对分离物和自然群落的原位和实验研究得到了证实。然而,由于当前方法学的限制,对 KtW 的全面测试仍然受到阻碍。特别是,对竞争原核生物种群和病毒种群特异性吸附和衰减率的养分吸收速率的量化似乎是未来几年最艰巨的挑战。

相似文献

2
Optimal defense strategies in an idealized microbial food web under trade-off between competition and defense.
PLoS One. 2014 Jul 7;9(7):e101415. doi: 10.1371/journal.pone.0101415. eCollection 2014.
4
Predation on prokaryotes in the water column and its ecological implications.
Nat Rev Microbiol. 2005 Jul;3(7):537-46. doi: 10.1038/nrmicro1180.
5
Foraging trade-offs, flagellar arrangements, and flow architecture of planktonic protists.
Proc Natl Acad Sci U S A. 2021 Jan 19;118(3). doi: 10.1073/pnas.2009930118.
8
Ecology of prokaryotic viruses.
FEMS Microbiol Rev. 2004 May;28(2):127-81. doi: 10.1016/j.femsre.2003.08.001.
9
Diatom/copepod interactions in plankton: the indirect chemical defense of unicellular algae.
Chembiochem. 2005 Jun;6(6):946-59. doi: 10.1002/cbic.200400348.

引用本文的文献

3
Estimates of microbial community stability using relative invader growth rates are robust across levels of invader species richness.
ISME Commun. 2025 Mar 2;5(1):ycaf040. doi: 10.1093/ismeco/ycaf040. eCollection 2025 Jan.
5
Microbial community structure is affected by phage-resistance associated increases in host density.
FEMS Microbiol Ecol. 2025 Mar 18;101(4). doi: 10.1093/femsec/fiaf027.
6
Coexistence Theory for Microbial Ecology, and Vice Versa.
Environ Microbiol. 2025 Mar;27(3):e70072. doi: 10.1111/1462-2920.70072.
7
Uncovering the hidden RNA virus diversity in Lake Nam Co: Evolutionary insights from an extreme high-altitude environment.
Proc Natl Acad Sci U S A. 2025 Feb 11;122(6):e2420162122. doi: 10.1073/pnas.2420162122. Epub 2025 Feb 4.
8
Host-specific viral predation network on coral reefs.
ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae240.
9
Dispersal shapes compositional and functional diversity in aquatic microbial communities.
mSystems. 2024 Dec 17;9(12):e0140324. doi: 10.1128/msystems.01403-24. Epub 2024 Nov 18.
10
Viral plasticity facilitates host diversity in challenging environments.
Nat Commun. 2024 Aug 29;15(1):7473. doi: 10.1038/s41467-024-51344-3.

本文引用的文献

4
Are viruses important partners in pelagic fend webs?
Trends Ecol Evol. 1993 Jun;8(6):209-13. doi: 10.1016/0169-5347(93)90101-T.
5
Explaining microbial population genomics through phage predation.
Nat Rev Microbiol. 2009 Nov;7(11):828-36. doi: 10.1038/nrmicro2235.
6
Viral control of bacterial biodiversity--evidence from a nutrient-enriched marine mesocosm experiment.
Environ Microbiol. 2009 Oct;11(10):2585-97. doi: 10.1111/j.1462-2920.2009.01983.x. Epub 2009 Jun 24.
7
Bacteriophages drive strain diversification in a marine Flavobacterium: implications for phage resistance and physiological properties.
Environ Microbiol. 2009 Aug;11(8):1971-82. doi: 10.1111/j.1462-2920.2009.01920.x. Epub 2009 Mar 31.
8
Viral and flagellate control of prokaryotic production and community structure in offshore Mediterranean waters.
Appl Environ Microbiol. 2009 Jul;75(14):4801-12. doi: 10.1128/AEM.01376-08. Epub 2009 May 22.
9
Metatranscriptomics reveals unique microbial small RNAs in the ocean's water column.
Nature. 2009 May 14;459(7244):266-9. doi: 10.1038/nature08055.
10
Microbial community proteomics: elucidating the catalysts and metabolic mechanisms that drive the Earth's biogeochemical cycles.
Curr Opin Microbiol. 2009 Jun;12(3):310-7. doi: 10.1016/j.mib.2009.03.004. Epub 2009 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验