Suppr超能文献

主要组织相容性复合体 I 类限制肽内的限制因素:呈递和对 T 细胞识别的影响。

Constraints within major histocompatibility complex class I restricted peptides: presentation and consequences for T-cell recognition.

机构信息

The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia.

出版信息

Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5534-9. doi: 10.1073/pnas.1000032107. Epub 2010 Mar 8.

Abstract

Residues within processed protein fragments bound to major histocompatibility complex class I (MHC-I) glycoproteins have been considered to function as a series of "independent pegs" that either anchor the peptide (p) to the MHC-I and/or interact with the spectrum of alphabeta-T-cell receptors (TCRs) specific for the pMHC-I epitope in question. Mining of the extensive pMHC-I structural database established that many self- and viral peptides show extensive and direct interresidue interactions, an unexpected finding that has led us to the idea of "constrained" peptides. Mutational analysis of two constrained peptides (the HLA B44 restricted self-peptide (B44DPalpha-EEFGRAFSF) and an H2-D(b) restricted influenza peptide (D(b)PA, SSLENFRAYV) demonstrated that the conformation of the prominently exposed arginine in both peptides was governed by interactions with MHC-I-orientated flanking residues from the peptide itself. Using reverse genetics in a murine influenza model, we revealed that mutation of an MHC-I-orientated residue (SSLENFRAYV --> SSLENARAYV) within the constrained PA peptide resulted in a diminished cytotoxic T lymphocyte (CTL) response and the recruitment of a limited pMHC-I specific TCR repertoire. Interactions between individual peptide positions can thus impose fine control on the conformation of pMHC-I epitopes, whereas the perturbation of such constraints can lead to a previously unappreciated mechanism of viral escape.

摘要

与主要组织相容性复合体 I (MHC-I) 糖蛋白结合的加工蛋白片段中的残基被认为是一系列“独立的钉脚”,它们将肽 (p) 锚定到 MHC-I 上,或者与针对所讨论的 pMHC-I 表位的一系列 αβ-T 细胞受体 (TCR) 相互作用。对广泛的 pMHC-I 结构数据库的挖掘表明,许多自身和病毒肽显示出广泛和直接的残基间相互作用,这一意外发现使我们想到了“受约束”的肽。对两个受约束的肽 (HLA B44 限制的自身肽 (B44DPalpha-EEFGRAFSF) 和 H2-D(b) 限制的流感肽 (D(b)PA, SSLENFRAYV)) 的突变分析表明,两个肽中突出暴露的精氨酸的构象受自身肽的 MHC-I 定向侧翼残基相互作用的控制。在小鼠流感模型中使用反向遗传学,我们揭示了在受约束的 PA 肽内一个 MHC-I 定向残基 (SSLENFRAYV --> SSLENARAYV) 的突变导致细胞毒性 T 淋巴细胞 (CTL) 反应减弱,并招募了有限的 pMHC-I 特异性 TCR 库。因此,单个肽位置之间的相互作用可以对 pMHC-I 表位的构象进行精细控制,而这种约束的破坏可能导致以前未被认识到的病毒逃逸机制。

相似文献

1
Constraints within major histocompatibility complex class I restricted peptides: presentation and consequences for T-cell recognition.
Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5534-9. doi: 10.1073/pnas.1000032107. Epub 2010 Mar 8.
2
A conserved energetic footprint underpins recognition of human leukocyte antigen-E by two distinct αβ T cell receptors.
J Biol Chem. 2017 Dec 22;292(51):21149-21158. doi: 10.1074/jbc.M117.807719. Epub 2017 Sep 25.
8
Emerging principles for the recognition of peptide antigens by MHC class I molecules.
Science. 1992 Aug 14;257(5072):927-34. doi: 10.1126/science.1323878.
9
Recognition of core and flanking amino acids of MHC class II-bound peptides by the T cell receptor.
Eur J Immunol. 2002 Sep;32(9):2510-20. doi: 10.1002/1521-4141(200209)32:9<2510::AID-IMMU2510>3.0.CO;2-Q.

引用本文的文献

2
Characterisation of novel influenza-derived HLA-B*18:01-restricted epitopes.
Clin Transl Immunology. 2024 May 10;13(5):e1509. doi: 10.1002/cti2.1509. eCollection 2024.
4
Know thy immune self and non-self: Proteomics informs on the expanse of self and non-self, and how and where they arise.
Proteomics. 2021 Dec;21(23-24):e2000143. doi: 10.1002/pmic.202000143. Epub 2021 Aug 9.
5
Structural Comparison Between MHC Classes I and II; in Evolution, a Class-II-Like Molecule Probably Came First.
Front Immunol. 2021 Jun 14;12:621153. doi: 10.3389/fimmu.2021.621153. eCollection 2021.
7
The presentation of SARS-CoV-2 peptides by the common HLA-A02:01 molecule.
iScience. 2021 Feb 19;24(2):102096. doi: 10.1016/j.isci.2021.102096. Epub 2021 Jan 22.
8
Structural dissimilarity from self drives neoepitope escape from immune tolerance.
Nat Chem Biol. 2020 Nov;16(11):1269-1276. doi: 10.1038/s41589-020-0610-1. Epub 2020 Aug 17.

本文引用的文献

1
Structural basis for T cell alloreactivity among three HLA-B14 and HLA-B27 antigens.
J Biol Chem. 2009 Oct 23;284(43):29784-97. doi: 10.1074/jbc.M109.038497. Epub 2009 Jul 18.
2
Antigen processing influences HIV-specific cytotoxic T lymphocyte immunodominance.
Nat Immunol. 2009 Jun;10(6):636-46. doi: 10.1038/ni.1728. Epub 2009 May 3.
3
Structural and biological basis of CTL escape in coronavirus-infected mice.
J Immunol. 2008 Mar 15;180(6):3926-37. doi: 10.4049/jimmunol.180.6.3926.
4
Impact of clonal competition for peptide-MHC complexes on the CD8+ T-cell repertoire selection in a persistent viral infection.
Blood. 2008 Apr 15;111(8):4283-92. doi: 10.1182/blood-2007-11-122622. Epub 2008 Feb 12.
5
T-cell receptor bias and immunity.
Curr Opin Immunol. 2008 Feb;20(1):119-25. doi: 10.1016/j.coi.2007.12.001. Epub 2008 Jan 18.
9
Structural determinants of T-cell receptor bias in immunity.
Nat Rev Immunol. 2006 Dec;6(12):883-94. doi: 10.1038/nri1977. Epub 2006 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验