Suppr超能文献

常染色体显性遗传性多囊肾病的分子进展。

Molecular advances in autosomal dominant polycystic kidney disease.

机构信息

Departments of Internal Medicine and Genetics, Yale School of Medicine, New Haven, CT 06520-8029, USA.

出版信息

Adv Chronic Kidney Dis. 2010 Mar;17(2):118-30. doi: 10.1053/j.ackd.2010.01.002.

Abstract

Autosomal dominant polycystic disease (ADPKD) is the most common form of inherited kidney disease that results in renal failure. The understanding of the pathogenesis of ADPKD has advanced significantly since the discovery of the 2 causative genes, PKD1 and PKD2. Dominantly inherited gene mutations followed by somatic second-hit mutations inactivating the normal copy of the respective gene result in renal tubular cyst formation that deforms the kidney and eventually impairs its function. The respective gene products, polycystin-1 and polycystin-2, work together in a common cellular pathway. Polycystin-1, a large receptor molecule, forms a receptor-channel complex with polycystin-2, which is a cation channel belonging to the TRP family. Both polycystin proteins have been localized to the primary cilium, a nonmotile microtubule-based structure that extends from the apical membrane of tubular cells into the lumen. Here we discuss recent insights in the pathogenesis of ADPKD including the genetics of ADPKD, the properties of the respective polycystin proteins, the role of cilia, and some cell-signaling pathways that have been implicated in the pathways related to PKD1 and PKD2.

摘要

常染色体显性多囊肾病(ADPKD)是导致肾衰竭的最常见遗传性肾脏疾病。自从发现导致该病的两个致病基因 PKD1 和 PKD2 以来,对 ADPKD 的发病机制的理解已经有了显著的进展。显性遗传基因突变,随后是体细胞二次打击突变使相应基因的正常拷贝失活,导致肾小管囊肿形成,使肾脏变形,最终损害其功能。相应的基因产物,多囊蛋白-1 和多囊蛋白-2,在共同的细胞途径中协同作用。多囊蛋白-1 是一种大型受体分子,与属于 TRP 家族的阳离子通道多囊蛋白-2 形成受体-通道复合物。这两种多囊蛋白都定位于初级纤毛,这是一种从管状细胞的顶膜延伸到管腔的非运动微管基结构。本文讨论了 ADPKD 的发病机制的最新进展,包括 ADPKD 的遗传学、各自多囊蛋白的特性、纤毛的作用以及一些细胞信号通路,这些都与 PKD1 和 PKD2 相关途径有关。

相似文献

1
Molecular advances in autosomal dominant polycystic kidney disease.
Adv Chronic Kidney Dis. 2010 Mar;17(2):118-30. doi: 10.1053/j.ackd.2010.01.002.
2
Autosomal dominant polycystic kidney disease: recent advances in pathogenesis and potential therapies.
Clin Exp Nephrol. 2013 Jun;17(3):317-26. doi: 10.1007/s10157-012-0741-0. Epub 2012 Nov 29.
3
4
Cilia and polycystic kidney disease.
Semin Cell Dev Biol. 2021 Feb;110:139-148. doi: 10.1016/j.semcdb.2020.05.003. Epub 2020 May 28.
5
Genetic Mechanisms of ADPKD.
Adv Exp Med Biol. 2016;933:13-22. doi: 10.1007/978-981-10-2041-4_2.
6
Molecular dysregulation of ciliary polycystin-2 channels caused by variants in the TOP domain.
Proc Natl Acad Sci U S A. 2020 May 12;117(19):10329-10338. doi: 10.1073/pnas.1920777117. Epub 2020 Apr 24.
7
Molecular basis of autosomal dominant polycystic kidney disease.
Adv Anat Pathol. 2005 May;12(3):126-33. doi: 10.1097/01.pap.0000163959.29032.1f.
8
Autosomal dominant polycystic kidney disease: clues to pathogenesis.
Hum Mol Genet. 1999;8(10):1861-6. doi: 10.1093/hmg/8.10.1861.
9
Polycystic kidney disease: novel insights into polycystin function.
Trends Mol Med. 2023 Apr;29(4):268-281. doi: 10.1016/j.molmed.2023.01.005. Epub 2023 Feb 15.
10
Cyclin-Dependent Kinase 1 Activity Is a Driver of Cyst Growth in Polycystic Kidney Disease.
J Am Soc Nephrol. 2021 Jan;32(1):41-51. doi: 10.1681/ASN.2020040511. Epub 2020 Oct 12.

引用本文的文献

1
Glycosylation in kidney diseases.
Precis Clin Med. 2025 Jul 11;8(3):pbaf017. doi: 10.1093/pcmedi/pbaf017. eCollection 2025 Sep.
3
Adamts1 and Cyst Expansion in Polycystic Kidney Disease.
J Am Soc Nephrol. 2025 Apr 1;36(4):559-570. doi: 10.1681/ASN.0000000557. Epub 2024 Nov 8.
5
Autosomal Dominant Polycystic Kidney Disease: Extrarenal Involvement.
Int J Mol Sci. 2024 Feb 22;25(5):2554. doi: 10.3390/ijms25052554.
6
Cardiovascular Manifestations and Management in ADPKD.
Kidney Int Rep. 2023 Aug 4;8(10):1924-1940. doi: 10.1016/j.ekir.2023.07.017. eCollection 2023 Oct.
9
From lymphatic endothelial cell migration to formation of tubular lymphatic vascular network.
Front Physiol. 2023 Feb 21;14:1124696. doi: 10.3389/fphys.2023.1124696. eCollection 2023.
10
Ameliorating liver disease in an autosomal recessive polycystic kidney disease mouse model.
Am J Physiol Gastrointest Liver Physiol. 2023 May 1;324(5):G404-G414. doi: 10.1152/ajpgi.00255.2022. Epub 2023 Mar 7.

本文引用的文献

1
Loss of oriented cell division does not initiate cyst formation.
J Am Soc Nephrol. 2010 Feb;21(2):295-302. doi: 10.1681/ASN.2009060603. Epub 2009 Dec 3.
2
Pkd1 haploinsufficiency increases renal damage and induces microcyst formation following ischemia/reperfusion.
J Am Soc Nephrol. 2009 Nov;20(11):2389-402. doi: 10.1681/ASN.2008040435. Epub 2009 Oct 15.
3
Analysis of the cytoplasmic interaction between polycystin-1 and polycystin-2.
Am J Physiol Renal Physiol. 2009 Nov;297(5):F1310-5. doi: 10.1152/ajprenal.00412.2009. Epub 2009 Sep 2.
4
Structural and molecular basis of the assembly of the TRPP2/PKD1 complex.
Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11558-63. doi: 10.1073/pnas.0903684106. Epub 2009 Jun 25.
5
Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis.
Nat Genet. 2009 Jul;41(7):793-9. doi: 10.1038/ng.400. Epub 2009 Jun 21.
7
Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy.
J Clin Invest. 2009 Mar;119(3):428-37. doi: 10.1172/JCI37041. Epub 2009 Mar 2.
8
9
Incompletely penetrant PKD1 alleles suggest a role for gene dosage in cyst initiation in polycystic kidney disease.
Kidney Int. 2009 Apr;75(8):848-55. doi: 10.1038/ki.2008.686. Epub 2009 Jan 21.
10
Nephronophthisis: disease mechanisms of a ciliopathy.
J Am Soc Nephrol. 2009 Jan;20(1):23-35. doi: 10.1681/ASN.2008050456. Epub 2008 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验