Suppr超能文献

通过 CFTR 中 DeltaF508 突变的第二部位抑制子恢复结构域折叠和结构域间组装。

Restoration of domain folding and interdomain assembly by second-site suppressors of the DeltaF508 mutation in CFTR.

机构信息

Department of Biochemistry and Biophysics and Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC 27599, USA.

出版信息

FASEB J. 2010 Aug;24(8):3103-12. doi: 10.1096/fj.09-141788. Epub 2010 Mar 16.

Abstract

Deletion of PHE508 (DeltaF508) from the first nucleotide-binding domain (NBD1) of CFTR, which causes most cystic fibrosis, disrupts the folding and assembly of the protein. Although the folding pathways and yield of isolated NBD1 are altered, its global structure is not, and details of the changes in the rest of the protein remain unclear. To gain further insight into how the whole mutant protein is altered, we have determined the influence of known second-site suppressor mutations in NBD1 on the conformation of this domain and key interfaces between domains. We found that the suppressors restored maturation of only those processing mutations located in NBD1, but not in other domains, including those in the C-terminal cytoplasmic loop of the second membrane-spanning domain, which forms an interface with the NBD1 surface. Nevertheless, the suppressors promoted the formation of this interface and others in the absence of F508. The suppressors restored maturation in a DeltaF508 construct from which NBD2 was absent but to a lesser extent than in the full-length, indicating that DeltaF508 disrupts interactions involving NBD2, as well as other domains. Rescue of DeltaF508-CFTR by suppressors required the biosynthesis of the entire full-length protein in continuity, as it did not occur when N- and C-terminal "halves" were coexpressed. Simultaneous with these interdomain perturbations, DeltaF508 resulted in suppressor reversed alterations in accessibility of residues both in the F508-containing NBD1 surface loop and in the Q loop within the domain core. Thus, in the context of the full-length protein, DeltaF508 mutation causes detectable changes in NBD1 conformation, as well as interdomain interactions.

摘要

CFTR 中第一个核苷酸结合域(NBD1)中 PHE508(DeltaF508)的缺失导致了大多数囊性纤维化,破坏了蛋白质的折叠和组装。尽管分离的 NBD1 的折叠途径和产量发生了改变,但它的整体结构没有改变,蛋白质其余部分的变化细节仍不清楚。为了更深入地了解整个突变蛋白是如何改变的,我们确定了 NBD1 中已知的第二位置抑制突变对该结构域和结构域之间关键界面的构象的影响。我们发现,这些抑制剂仅能恢复那些位于 NBD1 中的加工突变的成熟,而不是其他结构域中的突变,包括第二跨膜结构域的 C 端细胞质环中的突变,该结构域与 NBD1 表面形成界面。然而,在没有 F508 的情况下,抑制剂促进了该界面和其他界面的形成。抑制剂在 NBD2 缺失的 DeltaF508 构建体中恢复了成熟度,但不如全长构建体中恢复的程度大,这表明 DeltaF508 破坏了涉及 NBD2 和其他结构域的相互作用。抑制剂对 DeltaF508-CFTR 的挽救需要整个全长蛋白质的连续生物合成,因为当 N 端和 C 端“半”同时表达时,这种挽救就不会发生。在这些结构域间干扰的同时,DeltaF508 导致 F508 所在的 NBD1 表面环和结构域核心内的 Q 环中的残基的可及性发生了抑制剂逆转的改变。因此,在全长蛋白质的背景下,DeltaF508 突变导致 NBD1 构象以及结构域间相互作用发生了可检测的变化。

相似文献

1
3
The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR.
Nat Struct Mol Biol. 2005 Jan;12(1):17-25. doi: 10.1038/nsmb882. Epub 2004 Dec 26.
4
Diminished self-chaperoning activity of the DeltaF508 mutant of CFTR results in protein misfolding.
PLoS Comput Biol. 2008 Feb 29;4(2):e1000008. doi: 10.1371/journal.pcbi.1000008.
6
Restoration of NBD1 thermal stability is necessary and sufficient to correct ∆F508 CFTR folding and assembly.
J Mol Biol. 2015 Jan 16;427(1):106-20. doi: 10.1016/j.jmb.2014.07.026. Epub 2014 Jul 30.
7
The V510D suppressor mutation stabilizes DeltaF508-CFTR at the cell surface.
Biochemistry. 2010 Aug 3;49(30):6352-7. doi: 10.1021/bi100807h.
8
Structure and dynamics of NBD1 from CFTR characterized using crystallography and hydrogen/deuterium exchange mass spectrometry.
J Mol Biol. 2010 Feb 19;396(2):406-30. doi: 10.1016/j.jmb.2009.11.051. Epub 2009 Nov 26.
9
Domain interdependence in the biosynthetic assembly of CFTR.
J Mol Biol. 2007 Jan 26;365(4):981-94. doi: 10.1016/j.jmb.2006.10.086. Epub 2006 Nov 10.
10
The primary folding defect and rescue of ΔF508 CFTR emerge during translation of the mutant domain.
PLoS One. 2010 Nov 30;5(11):e15458. doi: 10.1371/journal.pone.0015458.

引用本文的文献

1
Proteostasis landscapes of cystic fibrosis variants reveal drug response vulnerability.
Proc Natl Acad Sci U S A. 2025 Apr 29;122(17):e2418407122. doi: 10.1073/pnas.2418407122. Epub 2025 Apr 22.
2
Functional rescue of F508del-CFTR through revertant mutations introduced by CRISPR base editing.
Mol Ther. 2025 Mar 5;33(3):970-985. doi: 10.1016/j.ymthe.2025.01.011. Epub 2025 Jan 10.
3
Proteostasis Landscapes of Cystic Fibrosis Variants Reveals Drug Response Vulnerability.
bioRxiv. 2025 Jan 17:2024.07.10.602964. doi: 10.1101/2024.07.10.602964.
4
Mutation accumulation in H. sapiens F508del CFTR countermands dN/dS type genomic analysis.
PLoS One. 2024 Jul 18;19(7):e0305832. doi: 10.1371/journal.pone.0305832. eCollection 2024.
5
A uniquely efficacious type of CFTR corrector with complementary mode of action.
Sci Adv. 2024 Mar;10(9):eadk1814. doi: 10.1126/sciadv.adk1814. Epub 2024 Mar 1.
6
Benchmarking AlphaMissense pathogenicity predictions against cystic fibrosis variants.
PLoS One. 2024 Jan 25;19(1):e0297560. doi: 10.1371/journal.pone.0297560. eCollection 2024.
7
Benchmarking AlphaMissense Pathogenicity Predictions Against Cystic Fibrosis Variants.
bioRxiv. 2024 Jan 4:2023.10.05.561147. doi: 10.1101/2023.10.05.561147.
9
Molecular structures reveal synergistic rescue of Δ508 CFTR by Trikafta modulators.
Science. 2022 Oct 21;378(6617):284-290. doi: 10.1126/science.ade2216. Epub 2022 Oct 20.
10
Pharmacological chaperones improve intra-domain stability and inter-domain assembly via distinct binding sites to rescue misfolded CFTR.
Cell Mol Life Sci. 2021 Dec;78(23):7813-7829. doi: 10.1007/s00018-021-03994-5. Epub 2021 Oct 29.

本文引用的文献

1
Structure and dynamics of NBD1 from CFTR characterized using crystallography and hydrogen/deuterium exchange mass spectrometry.
J Mol Biol. 2010 Feb 19;396(2):406-30. doi: 10.1016/j.jmb.2009.11.051. Epub 2009 Nov 26.
3
Cooperative assembly and misfolding of CFTR domains in vivo.
Mol Biol Cell. 2009 Apr;20(7):1903-15. doi: 10.1091/mbc.e08-09-0950. Epub 2009 Jan 28.
6
Diminished self-chaperoning activity of the DeltaF508 mutant of CFTR results in protein misfolding.
PLoS Comput Biol. 2008 Feb 29;4(2):e1000008. doi: 10.1371/journal.pcbi.1000008.
7
Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function.
Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3256-61. doi: 10.1073/pnas.0800254105. Epub 2008 Feb 27.
8
CFTR function and prospects for therapy.
Annu Rev Biochem. 2008;77:701-26. doi: 10.1146/annurev.biochem.75.103004.142532.
9
Domain interdependence in the biosynthetic assembly of CFTR.
J Mol Biol. 2007 Jan 26;365(4):981-94. doi: 10.1016/j.jmb.2006.10.086. Epub 2006 Nov 10.
10
Revertant mutants G550E and 4RK rescue cystic fibrosis mutants in the first nucleotide-binding domain of CFTR by different mechanisms.
Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17891-6. doi: 10.1073/pnas.0608312103. Epub 2006 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验