Suppr超能文献

非肌肉浸润性膀胱癌(NMIUC)的分子发生机制。

Molecular genesis of non-muscle-invasive urothelial carcinoma (NMIUC).

机构信息

Department of Molecular Physiology, University of Virginia, Charlottesville, VA 22908, USA.

出版信息

Expert Rev Mol Med. 2010 Mar 25;12:e10. doi: 10.1017/S1462399410001407.

Abstract

Urothelial carcinoma (UC) is the most common type of bladder cancer in Western nations. Most patients present with the non-muscle-invasive (NMIUC) form of the disease, while up to a third harbour the invasive form (MIUC). Specifically, the aetiology of NMIUC appears to be multifactorial and very different from that of MIUC. Loss of specific tumour suppressor genes as well as gain-of-function mutations in proteins within defined cellular signalling pathways have been implicated in NMIUC aetiology. The regions of chromosome 9 that harbour CDKN2A, CDKN2B, TSC1, PTCH1 and DBC1 are frequently mutated in NMIUC, resulting in functional loss; in addition, HRAS and FGFR3, which are both proto-oncogenes encoding components of the Ras-MAPK signalling pathway, have been found to harbour activating mutations in a large number of NMIUCs. Interestingly, some of these molecular events are mutually exclusive, suggesting functional equivalence. Since several of these driving changes are amenable to therapeutic targeting, understanding the signalling events in NMIUC may offer novel approaches to manage the recurrence and progression of this disease.

摘要

尿路上皮癌(UC)是西方国家最常见的膀胱癌类型。大多数患者表现为非肌肉浸润性(NMIUC)疾病,而多达三分之一的患者存在浸润性形式(MIUC)。具体而言,NMIUC 的病因似乎是多因素的,与 MIUC 的病因非常不同。特定肿瘤抑制基因的缺失以及在特定细胞信号通路中的功能获得性突变蛋白已被认为与 NMIUC 的病因有关。在染色体 9 上,CDKN2A、CDKN2B、TSC1、PTCH1 和 DBC1 所在的区域在 NMIUC 中经常发生突变,导致功能丧失;此外,HRAS 和 FGFR3 都是原癌基因,编码 Ras-MAPK 信号通路的组成部分,在大量 NMIUC 中发现了激活突变。有趣的是,其中一些分子事件是相互排斥的,表明功能等效。由于其中一些驱动变化可以进行治疗性靶向,因此了解 NMIUC 中的信号事件可能为管理该疾病的复发和进展提供新的方法。

相似文献

1
Molecular genesis of non-muscle-invasive urothelial carcinoma (NMIUC).
Expert Rev Mol Med. 2010 Mar 25;12:e10. doi: 10.1017/S1462399410001407.
3
FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma.
Oncogene. 2005 Aug 4;24(33):5218-25. doi: 10.1038/sj.onc.1208705.
6
ETV5 links the FGFR3 and Hippo signalling pathways in bladder cancer.
Sci Rep. 2019 Apr 5;9(1):5740. doi: 10.1038/s41598-018-36456-3.
7
H-RAS mutation is a key molecular feature of pediatric urothelial bladder cancer. A detailed report of three cases.
J Pediatr Urol. 2016 Apr;12(2):91.e1-7. doi: 10.1016/j.jpurol.2015.08.020. Epub 2015 Oct 22.
8
Tumor evolution and progression in multifocal and paired non-invasive/invasive urothelial carcinoma.
Virchows Arch. 2015 Mar;466(3):297-311. doi: 10.1007/s00428-014-1699-y. Epub 2014 Dec 11.
9
Biology of urothelial tumorigenesis: insights from genetically engineered mice.
Cancer Metastasis Rev. 2009 Dec;28(3-4):281-90. doi: 10.1007/s10555-009-9189-4.
10
Small molecule FGF receptor inhibitors block FGFR-dependent urothelial carcinoma growth in vitro and in vivo.
Br J Cancer. 2011 Jan 4;104(1):75-82. doi: 10.1038/sj.bjc.6606016. Epub 2010 Nov 30.

引用本文的文献

1
Bisulfite-free methylation in urine enables early noninvasive detection of urothelial carcinoma.
Bioeng Transl Med. 2025 Feb 26;10(4):e70004. doi: 10.1002/btm2.70004. eCollection 2025 Jul.
3
Molecular Oncology of Bladder Cancer from Inception to Modern Perspective.
Cancers (Basel). 2022 May 24;14(11):2578. doi: 10.3390/cancers14112578.
4
The histidine phosphatase LHPP: an emerging player in cancer.
Cell Cycle. 2022 Jun;21(11):1140-1152. doi: 10.1080/15384101.2022.2044148. Epub 2022 Mar 3.
5
Role of Survivin in Bladder Cancer: Issues to Be Overcome When Designing an Efficient Dual Nano-Therapy.
Pharmaceutics. 2021 Nov 19;13(11):1959. doi: 10.3390/pharmaceutics13111959.
6
The Prognostic Value of FGFR3 Expression in Patients with T1 Non-Muscle Invasive Bladder Cancer.
Cancer Manag Res. 2021 Aug 20;13:6567-6578. doi: 10.2147/CMAR.S318893. eCollection 2021.
7
Is cystoscopy follow-up protocol safe for low-risk bladder cancer without muscle invasion?
Urol Ann. 2020 Jan-Mar;12(1):25-30. doi: 10.4103/UA.UA_143_18. Epub 2019 Nov 7.
8
LHPP suppresses bladder cancer cell proliferation and growth via inactivating AKT/p65 signaling pathway.
Biosci Rep. 2019 Jul 30;39(7). doi: 10.1042/BSR20182270. Print 2019 Jul 31.
9
SEOM clinical guideline for treatment of muscle-invasive and metastatic urothelial bladder cancer (2018).
Clin Transl Oncol. 2019 Jan;21(1):64-74. doi: 10.1007/s12094-018-02001-x. Epub 2018 Dec 18.

本文引用的文献

1
Role and rationale of gene therapy and other novel therapies in the management of NMIBC.
Expert Rev Anticancer Ther. 2009 Dec;9(12):1777-82. doi: 10.1586/era.09.106.
2
Generation of monoclonal antibody targeting fibroblast growth factor receptor 3.
Hybridoma (Larchmt). 2009 Aug;28(4):295-300. doi: 10.1089/hyb.2009.0018.
4
PI3K/PTEN signaling in angiogenesis and tumorigenesis.
Adv Cancer Res. 2009;102:19-65. doi: 10.1016/S0065-230X(09)02002-8.
6
8
Cancer statistics, 2009.
CA Cancer J Clin. 2009 Jul-Aug;59(4):225-49. doi: 10.3322/caac.20006. Epub 2009 May 27.
9
Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice.
J Clin Invest. 2009 May;119(5):1216-29. doi: 10.1172/JCI38017. Epub 2009 Apr 20.
10
Activation of RAS family genes in urothelial carcinoma.
J Urol. 2009 May;181(5):2312-9. doi: 10.1016/j.juro.2009.01.011. Epub 2009 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验