Suppr超能文献

通过聚(D,L-丙交酯-共-乙交酯)纳米粒递呈多肽可增强其树突状细胞刺激能力。

Delivery of a peptide via poly(D,L-lactic-co-glycolic) acid nanoparticles enhances its dendritic cell-stimulatory capacity.

机构信息

Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093-0815, USA

出版信息

Nanomedicine. 2010 Oct;6(5):651-61. doi: 10.1016/j.nano.2010.03.001. Epub 2010 Mar 27.

Abstract

UNLABELLED

Nanoparticles (NPs) are attractive carriers for vaccines. We have previously shown that a short peptide (Hp91) activates dendritic cells (DCs), which are critical for initiation of immune responses. In an effort to develop Hp91 as a vaccine adjuvant with NP carriers, we evaluated its activity when encapsulated in or conjugated to the surface of poly(d,l-lactic-co-glycolic) acid (PLGA) NPs. We found that Hp91, when encapsulated in or conjugated to the surface of PLGA-NPs, not only activates both human and mouse DCs, but is in fact more potent than free Hp91. Hp91 packaged within NPs was about fivefold more potent than the free peptide, and Hp91 conjugated to the surface of NPs was ∼20-fold more potent than free Hp91. Because of their capacity to activate DCs, such NP-Hp91 systems are promising as delivery vehicles for subunit vaccines against infectious disease or cancer.

FROM THE CLINICAL EDITOR

In this paper, nanoparticle-based dendritic cell activating vaccines are described and discussed. The authors report that the presented PLGA NP based vaccine constructs increase the potency of the studied vaccine by up to 20-fold, making them promising as delivery vehicles for subunit vaccines against infectious diseases or cancer.

摘要

未加标签

纳米粒子(NPs)是疫苗的有吸引力的载体。我们之前已经表明,短肽(Hp91)激活树突状细胞(DCs),这对于启动免疫反应至关重要。为了将 Hp91 开发为具有 NP 载体的疫苗佐剂,我们评估了其在包裹或缀合到聚(DL-丙交酯-共-乙交酯)(PLGA)NP 表面时的活性。我们发现,Hp91 包裹在或缀合到 PLGA-NP 的表面上,不仅可以激活人和小鼠的 DCs,而且实际上比游离的 Hp91 更有效。封装在 NPs 中的 Hp91 比游离肽强约五倍,而缀合到 NPs 表面的 Hp91 比游离 Hp91 强约 20 倍。由于其激活 DC 的能力,这种 NP-Hp91 系统有望成为针对传染病或癌症的亚单位疫苗的递送载体。

临床编辑按语

本文描述并讨论了基于纳米粒子的树突状细胞激活疫苗。作者报告说,所提出的基于 PLGA NP 的疫苗构建体将研究疫苗的效力提高了 20 倍,这使它们有望成为针对传染病或癌症的亚单位疫苗的递送载体。

相似文献

1
Delivery of a peptide via poly(D,L-lactic-co-glycolic) acid nanoparticles enhances its dendritic cell-stimulatory capacity.
Nanomedicine. 2010 Oct;6(5):651-61. doi: 10.1016/j.nano.2010.03.001. Epub 2010 Mar 27.
4
PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses.
Int J Nanomedicine. 2012;7:1475-87. doi: 10.2147/IJN.S29506. Epub 2012 Mar 15.
10
Nanoparticle delivery of mycophenolic acid upregulates PD-L1 on dendritic cells to prolong murine allograft survival.
Am J Transplant. 2011 Dec;11(12):2582-92. doi: 10.1111/j.1600-6143.2011.03725.x. Epub 2011 Aug 30.

引用本文的文献

1
Light-activated nanomaterials for tumor immunotherapy.
Front Chem. 2022 Oct 7;10:1031811. doi: 10.3389/fchem.2022.1031811. eCollection 2022.
2
Igniting Hope for Tumor Immunotherapy: Promoting the "Hot and Cold" Tumor Transition.
Clin Med Insights Oncol. 2022 Sep 15;16:11795549221120708. doi: 10.1177/11795549221120708. eCollection 2022.
3
Robust Antigen-Specific T Cell Activation within Injectable 3D Synthetic Nanovaccine Depots.
ACS Biomater Sci Eng. 2021 Dec 13;7(12):5622-5632. doi: 10.1021/acsbiomaterials.0c01648. Epub 2021 Nov 4.
4
Nanoparticle vaccines against respiratory syncytial virus.
Future Virol. 2020 Nov;15(11):763-778. doi: 10.2217/fvl-2020-0174. Epub 2020 Nov 30.
5
Advanced biomaterials for cancer immunotherapy.
Acta Pharmacol Sin. 2020 Jul;41(7):911-927. doi: 10.1038/s41401-020-0372-z. Epub 2020 Mar 2.
6
Microfluidics-Assisted Size Tuning and Biological Evaluation of PLGA Particles.
Pharmaceutics. 2019 Nov 8;11(11):590. doi: 10.3390/pharmaceutics11110590.
7
Nanoparticle-based vaccine development and evaluation against viral infections in pigs.
Vet Res. 2019 Nov 6;50(1):90. doi: 10.1186/s13567-019-0712-5.
9
Biomaterial-based platforms for in situ dendritic cell programming and their use in antitumor immunotherapy.
J Immunother Cancer. 2019 Sep 4;7(1):238. doi: 10.1186/s40425-019-0716-8.
10
Cancer resistance to treatment and antiresistance tools offered by multimodal multifunctional nanoparticles.
Cancer Nanotechnol. 2017;8(1):7. doi: 10.1186/s12645-017-0030-4. Epub 2017 Oct 26.

本文引用的文献

1
Randomized clinical studies of anti-tumor vaccination: state of the art in 2008.
Expert Rev Vaccines. 2009 Jan;8(1):51-66. doi: 10.1586/14760584.8.1.51.
2
Development of amphiphilic gamma-PGA-nanoparticle based tumor vaccine: potential of the nanoparticulate cytosolic protein delivery carrier.
Biochem Biophys Res Commun. 2008 Feb 8;366(2):408-13. doi: 10.1016/j.bbrc.2007.11.153. Epub 2007 Dec 7.
3
Exploiting lymphatic transport and complement activation in nanoparticle vaccines.
Nat Biotechnol. 2007 Oct;25(10):1159-64. doi: 10.1038/nbt1332. Epub 2007 Sep 16.
4
Antigen co-encapsulated with adjuvants efficiently drive protective T cell immunity.
Eur J Immunol. 2007 Aug;37(8):2063-74. doi: 10.1002/eji.200737169.
6
Encapsulation in liposomal nanoparticles enhances the immunostimulatory, adjuvant and anti-tumor activity of subcutaneously administered CpG ODN.
Cancer Immunol Immunother. 2007 Aug;56(8):1251-64. doi: 10.1007/s00262-006-0276-x. Epub 2007 Jan 23.
8
Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach.
J Control Release. 2006 Nov;116(1):1-27. doi: 10.1016/j.jconrel.2006.08.013. Epub 2006 Aug 23.
9
Dendritic cell activating peptides induce distinct cytokine profiles.
Int Immunol. 2006 Nov;18(11):1563-73. doi: 10.1093/intimm/dxl089. Epub 2006 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验